
Math 425 Fall 2005

Notes on the complex exponential and sine functions (§1.5)

I. Periodicity of the imaginary exponential. Recall the definition: if θ ∈ R then
eiθ def

= cos θ + i sin θ. Clearly ei(θ+2π) = eiθ (because of the 2π periodicity of the sine and
cosine functions of ordinary calculus). It’s also clear—from drawing a picture of eiθ on the
unit circle, say—that 2π is the “minimal period” of the imaginary exponential, in the sense
that if a ∈ R has the property that ei(θ+a) = eiθ for every θ ∈ R then a = 2πn for some
integer n.

II. Periodicity of complex the exponential. Recall the definition: if z = x + iy where
x, y ∈ R, then

ez def
= exeiy = ex(cos y + i sin y).

It’s clear from this definition and the periodicity of the imaginary exponential (§I) that
ez+2πi = ez, i.e.: “The complex exponential function is periodic with period 2πi.”

The first thing we want to show in these notes is that the period 2πi is “minimal” in the
same sense that 2π is the minimal period for the imaginary exponential (and for the ordinary
sine and cosine).

The “Minimal Period Theorem” for the complex exponential. If α ∈ C has the
property:

ez+α = ez for all z ∈ C,(1)

then α = 2πni for some integer n.

Proof. If we set z = 0 in (1) we see that eα = e0 = 1. Now write α in cartesian form:
α = a + ib where a, b ∈ R. Then 1 = eα = eaeib. Take absolute values on both sides of this
last equation to obtain 1 = ea, so, (because in this last equation we are dealing with the
ordinary exponential of calculus) a = 0. Thus α = ib, hence our previous equation ea = 1
becomes: eib = 1. It follows from the work of §I that b = 2πn for some integer n. Thus
α = 2πin, as promised. �

Corollary. eα = 1 ⇐⇒ α = 2πni for some integer n.

Proof. If eα = 1 then for each z ∈ C:

ez+α = ezeα = ez

so α is a period of the complex exponential, and hence, by the Theorem, is an integer multiple
of 2πi. �
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III. Univalence1 of the complex exponential. The complex exponential is univalent in
any open horizontal strip of width 2π (or less).

Remark. Width 2π is the best we can hope for by the periodicity of the complex exponential
noted in §II above.

Proof of theorem. We’ll do a little better, and show that: if

ez = ew with |Im z − Im w| < 2π,(2)

then z = w.

Thus, for example, if a ∈ R and S is the (non-open) strip {z ∈ C : a < Im z ≤ a + 2π}, then
the complex exponential is univalent on S. Also, if S is any open ribbon-shaped region of
vertical width 2π or less (draw a picture!), then the complex exponential is univalent on S.

So suppose z and w are complex numbers that satisfy condition (2). We wish to show z = w.
Multiply both sides of ez = ew by e−w and use the addition law for the complex exponential
to get ez−w = 1, whereupon the Corollary to the “Minimal Period Theorem” of §II insures
that z−w = 2πni for some integer n. Thus Im z− Im w = 2πn, hence |Im z− Im w| = 2π|n|.
But our hypothesis is that |Im z − Im w| < 2π, hence n = 0, whereupon z = w. �.

III. Zeros of the complex sine function. Recall that the complex sine function is defined,
for z ∈ C, as:

sin z
def
=

eiz − e−iz

2i
.

The goal of this section is to show that this extension of the usual sine function of calculus
to the complex plane does not add any new zeros.

Theorem. sin z = 0 ⇐⇒ z = nπ for some integer n.

Proof. By trigonometry we know that sin πn = 0 for any integer n, so what’s at stake here
is the converse: if sin z = 0 then z = πn for some integer n.

Well, sin z = 0 implies that eiz = e−iz, so by multiplying both sides by eiz and using the
addition formula for the complex exponential, we see that ei2z = 1, whereupon, by §I, there’s
an integer n such that 2z = 2πn, i.e., z = nπ. �

IV. Periodicity of the complex sine function. The minimal period of the complex sine
function is 2π.

Proof. We know that the complex sine function has period 2π (because of the 2πi period-
icity of the complex exponential). The important assertion here is that if, for some complex
number α,

sin(z + α) = sin z for all z ∈ C,(3)

1Here “univalence” means “one-to-one-ness”. Also, I’ll use “univalent” to mean “one-to-one”.
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then α is an integer multiple of 2π.

So suppose we have (3) for some α ∈ C. Then upon setting z = 0 we see that sin α = 0, hence
by §III we know that α is an integer multiple of π. We wish to show that this integer is even.
In any case, we now know α is real . Now set z = π/2 in (3). Then sin(α + π

2
) = sin π

2
= 1,

so (since α is real, hence we’re now operating in the realm of ordinary trigonometry):

α +
π

2
=

π

2
+ 2πn for some integer n

whereupon α = 2πn, as promised. �

V. Univalence of the complex sine function (cf. page 50). The complex sine is univalent
on vertical the strip

V
def
= {z ∈ C : 0 < Re z <

π

2
}.

Proof. Suppose z, w ∈ V and sin z = sin w.

To show: z = w.

Well, from the definition of the complex sine we know that

eiz − ei(−z) = eiw − ei(−w),

so upon rearranging to get “minus powers” on the same side of the equation:

eiz − eiw = ei(−z) − ei(−w) = ei(−z)ei(−w)
(
eiw − eiz

)
.(4)

So either
eiz − eiw = 0(5)

or we can divide both sides of (4) by eiz − eiw to yield:

−1 = ei(−z)ei(−w) = e−i(z+w).(6)

Suppose it’s (5) that’s true. Then eiz = eiw so by a now-familiar argument (using the
addition formula for the complex exponential, and the result of §II), z = w + 2πn for some
integer n, i.e. |Re z − Re w| = 2π|n|. But |Re z − Re w| < π, so n = 0, hence z = w.

I claim (6) can’t happen! If it did, then we’d have eiπ = −1 = e−i(z+w), so by a now-familiar
argument, we’d get

1 = e−i(z+w+π),

whereupon the “Corollary” in §I would guarantee that z + w + π = 2πn for some integer
n, i.e. that z + w would be an odd (possibly negative) multiple of π. Thus the same would
be true of Re z + Re w: it would be an odd multiple of π. But since z, w ∈ V we know
0 < Re z + Re w < π, so no such “odd multiple” can exist.

Thus it’s only (5) that can happen, and so our theorem is proved. �
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