HW Exercises for Section 4: Equations

Exercise 1. Look again at the HW exercises for Section 3, which concern studying the function $f(x)=x \sin (x)$ graphically.
(a) Compute, either by hand or by using Maple's "diff" command, the derivative of f.
(b) For x in the interval you used for the previous HW set, use Maple to numerically approximate several consecutive solutions of the equation $f^{\prime}(x)=0$. Show, without doing any computation, that these are not odd-integer multiples of $\pi / 2$ (as they would be if we were dealing with $f(x)=\sin (x))$.
(c) Now use Maple to show that the solutions you computed in part (b) get successively closer to oddinteger multiples of $\pi / 2$. Rewrite the equation $f^{\prime}(x)=0$ as $x=g(x)$, where you find the function g. Then use Maple to plot the graphs $y=x$ and $y=g(x)$ on the same set of axes (start out with x and y restricted to the interval $[-10,10]$, say) and use this plot to explain what is happening.

Exercise 2. Use Maple to verify Cramer's Rule for solving the system

$$
\begin{aligned}
& a_{1} x+b_{1} y=c_{1} \\
& a_{2} x+b_{2} y=c_{2}
\end{aligned}
$$

Exercise 3. (a) Use "fsolve" to find a (numerical approximation to a) solution of the nonlinear system of equations

$$
\begin{gathered}
x^{2}+y^{4}=1 \\
\cos (x)+\sin (y)=1
\end{gathered}
$$

Remember to give fsolve a set of equations (curly brackets), not a sequence (no brackets) or a list (square brackets) of equations.
(b) Without doing any computation, find a second solution that Maple didn't notice (in the next HW set we'll use Maple's advanced plotting capabilities to see that the solutions you've found here are the only ones). To force fsolve to find the second solution, you can specifiy starting points for the solution algorithm. Try something like this:
[$>$ fsolve(\{eqn1,eqn2\}, $\{x=1, y=1\}$);

