The Field Axioms

A *field* is a set F with binary operations + ("plus") and \cdot ("times") that obey the following axioms:

1. Basic algebraic laws

Law of closure: If $a, b \in F$ then a + b and $a \cdot b$ are both in F. Commutative Law: If $a, b \in F$ then a + b = b + a and $a \cdot b = b \cdot a$. Associative Law: If $a, b, c \in F$ then

a + (b + c) = (a + b) + c and a(bc) = (ab)c

(we write multiplication without the "dot" whenever we feel like it).

Distributive Law: If $a, b, c \in F$ then a(b+c) = ab + ac.

2. Existence of identities: There exist elements 0 and 1 in F such that for every $a \in F$: 0 + a = a and $1 \cdot a = a$ (we call 0 and 1 respective the "additive identity" and the "multiplicative identity").

Remark: Both these identity elements are unique. For example, suppose some element $b \in F$ is an additive identity, i.e., b + a = a for each $a \in F$. Then 0 + b = b by the definition of 0, while b + 0 = 0 by the property hypothesized for b. Summarizing, and using the commutative law:

$$b = 0 + b = b + 0 = 0$$

hence 0 is the only additive identity. Similar arguments establish the uniqueness of the multiplicative identity (an exercise, which I hope you'll work out!).

3. Existence of inverses

- Additive inverse: If $a \in F$ then there exists an element $b \in F$ such that a + b = 0 (we call b an "additive inverse" of a).
- Multiplicative inverse: If $a \in F$ and $a \neq 0$ then there exists an element b in F such that $a \cdot b = 1$.

Remarks

(a) It's the existence of the multiplicative inverse that distinguishes the integers \mathbb{Z} from the rational numbers \mathbb{Q} or the real numbers \mathbb{R} . Among the integers, only 1 has a multiplicative inverse in \mathbb{Z} .

(b) Additive and multiplicative inverses are unique. To see this for additive inverses, suppose b and b' are additive inverses for $a \in F$. Then 0 = a + b', so adding b to both sides:

$$b+0 = b + (a + b')$$

= $(b+a) + b'$ (Associate law of addition)
= $0 + b'$ (Commutative law of addition and "b an add. inverse of a")
= b' (since 0 is the additive identity).

Thus a has only one additive inverse. We call this "-a".

Similarly, if $a \in F$ is not 0 then a has only one multiplicative inverse (another exercise I hope you'll do); we call this one a^{-1} , or $\frac{1}{a}$.

- (c) *Examples:* We've already called attention to the fields \mathbb{R} of real numbers and \mathbb{Q} of rational numbers. Here are two others:
 - Quadratic extensions of the rationals. We'll just think about one of these—you can easily supply other examples. Let $\mathbb{Q}(\sqrt{2})$ denote the set of all real numbers of the form $a + b\sqrt{2}$, where a and b are rational. Then it's easy to check that $\mathbb{Q}(\sqrt{2})$ is closed under ordinary addition and multiplication, and obeys all the axioms for a field, except possibly for the existence of multiplicative inverses. But this too is true, and I leave it to you as an exercise to prove it.
 - The field \mathbb{C} of complex numbers. We write each element of this field as a + biwhere a and b are real numbers and i is the "imaginary" element whose defining property is $i^2 = -1$. We define addition and multiplication in the obvious way, but for multiplication we always reduce powers of i to either 1, i, -i or -1 using the equation $i^2 = -1$. Note that, in the spirit of the previous example, you can think of \mathbb{C} as the "quadratic extension" $\mathbb{R}(i)$ of the real field.
 - The "binary field." This is the two-element set $\mathbb{Z}_2 = \{0, 1\}$, with operations defined like this: 0 + 0 = 1 + 1 = 0, 0 + 1 = 1 + 0 = 1, $0 \cdot 0 = 1 \cdot 0 = 0 \cdot 1 = 0$, and $1 \cdot 1 = 1$.

Exercise: check that \mathbb{Z}_2 is a field. In particular, identify the additive and multiplicative identities and inverses.

Ordered Fields

An *ordered field* is a field on which there is defined on pairs of elements a relation "<" that obeys the following axioms:

Trichotomy: For each pair of elements $a, b \in F$, exactly one of these conditions holds: a < b, b < a, or a = b.

Transitivity: If $a, b, c \in F$ with a < b and b < c then a < c.

Additivity: If $a, b \in F$ with a < b, then a + c < b + c for every $c \in F$.

Multiplicativity: If $a, b \in F$ with a < b then:

- ac < bc whenever $c \in F$ with c > 0, and
- bc < ac whenever $c \in F$ with c < 0

Examples. The field \mathbb{R} of real numbers, with its usual order, is an ordered field, as is the field \mathbb{Q} of rational numbers with the order it inherits from the reals.

Proposition (Example 1.2 of our text): If F is an ordered field then $a^2 =: a \cdot a > 0$ for every non-zero $a \in F$.

Proof. Either a < 0 or a > 0 by Trichotomy. If a > 0 then $a^2 = a \cdot a > 0$ by the first multiplicative property. If a < 0 then the result follows in similar fashion from the second multiplicative property.

Corollary. In any ordered field: -1 < 0 < 1.

Proof. $1 \neq 0$, hence $1 = 1^2 > 0$ by the Proposition. By additivity

$$-1 = -1 + 0 < -1 + 1 = 0$$

which completes the proof.

Corollary. There's no way to make \mathbb{Z}_2 into an ordered field.

Proof. Suppose there's an ordering "<" on \mathbb{Z}_2 that *does* make it into an ordered field. Then by the previous Corollary, 0 < 1, so by additivity 1 = 0 + 1 < 1 + 1 = 0, i.e., both 0 < 1 and 1 < 0, which contradicts the trichotomy axiom. So such an ordering can't exist.

Extra Credit Problem. Verify that the complex numbers \mathbb{C} , with their usual addition and multiplication, form a field. Then show that there's no way to make \mathbb{C} into an ordered field.