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The Cyclic Decomposition of a Nilpotent Operator

J.H. Shapiro

1 Introduction.

Suppose T is a linear transformation on a vector space V . Recall Exercise #3 of
Chapter 8 of our text, which we restate here as:

1.1 Key Lemma. If, for some vector x in V and some positive integer m, we have:

Tm−1x 6= 0 but Tmx = 0

then the list (x, Tx, . . . , Tm−1x) is linearly independent.

Suppose in particular that V is finite dimensional with dimension n, and T is nilpotent
of index n. Then there is an x ∈ V with T n−1x 6= 0, and T nx = 0 (the first condition
arising from the definition of “index of nilpotence” and the second from the fact that
T n is the zero-operator). By the Key Lemma, the list (x, Tx, . . . , T n−1x) forms a
basis for V .

Recall that in this case the matrix of T with respect to the basis

(x, Tx, . . . , T n−1x)

has zeros everywhere except on the first subdiagonal, where it has ones. It is more
common to write the basis in reverse order, in which case the matrix of T has zeros
everywhere but on the first superdiagonal, where it has ones. We will say more about
such matrices later.

1.2 Cyclic terminology. Let us call a linear transformation T ∈ L(V ) a cyclic
operator if there is a vector x ∈ V for which the list (x, Tx, . . . , T n−1x) spans (and
is therefore a basis) for V . We call x a cyclic vector for T , and sometimes, when
overcome by exuberance, we say that the space V is cyclic for T , or just T -cyclic. If
x is a cyclic vector for T we call the corresponding basis (x, Tx, . . . , T n−1x) a cyclic
basis for V .

Using this terminology we can restate the Key Lemma like this:

1.3 Proposition. If V is a finite dimensional vector space and T a nilpotent op-
erator with index of nilpotence equal to dimV , then T is cyclic.

1.4 Exercise. (a) Suppose T is a linear transformation of a finite dimensional
vector space V , and that x is a cyclic vector for T .

(i) What is the matrix of T with respect to the corresponding cyclic basis of V ?

(ii) In terms of this matrix, what is the minimal polynomial of T?
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(b) Give an example of a cyclic linear transformation that is not nilpotent.
(c) Give an example of a nilpotent linear transformation that is not cyclic. What’s

the most extreme example of this situation?

1.5 The Fundamental Question. What can be said of T if it is nilpotent with
index of nilpotence < dimV ?

To get a handle on this question, suppose n = dimV (finite) and m is the index of
nilpotence of T , with m < n. By the definition of “index of nilpotence” we know that
there exists a vector x1 ∈ V such that Tm−1x1 6= 0. Since Tm = 0, the Key Lemma
guarantees that the list (x1, Tx1, . . . , T

m−1x1) is linearly independent, and clearly its
linear span V1 is T -invariant. We are going to prove that:

(*) V1 has a T -invariant complement,

i.e. that there exists a T -invariant subspace W1 of V such that V = V1 ⊕W1. Once
this is done, we’ll be able to restrict T to W1, where it’s still nilpotent of some index
m1 ≤ m, and find a vector x2 ∈ W1 such that Tm1−1x2 6= 0, whereupon, as above,
the list (x2, Tx2, . . . , T

m1−1x2) is linearly independent, and its linear span V2 is T -
invariant. Upon applying (*) to the restriction of T to W1 we obtain a splitting of W1

into two subspaces, V2 = span (x2, Tx2, . . . , T
m−1x2) and a T -invariant complement

W2.
Thus far V = V1 ⊕ V2 ⊕W2, where all three subspaces are T -invariant, and the

restrictions of T to the first two are cyclic. Since V is finite dimensional, we arrive,
after a finite number of repetitions of this argument, at a decomposition of V into
a finite direct sum of invariant subspaces, with T restricted to each subspace being
cyclic.

In summary: once we have established (*), we will have established that V splits
into the direct sum of finitely many T -invariant subspaces with the property that the
restriction of T to each is cyclic. Put more succinctly, we will have proved:

1.6 The Cyclic Nilpotent Theorem. Every nilpotent linear transformation of a
finite dimensional vector space splits into a direct sum of cyclic nilpotent transforma-
tions.

We are also interested in the matrix interpretation of this result. It asserts that
if T is nilpotent then V has a basis with respect to which the matrix of T is block
diagonal, each block being zero except for ones on the first superdiagonal.

If, instead, it is T − λI that is nilpotent for some scalar λ, then each of these
cyclic subspaces is T -invariant, and the corresponding matrices have λ down the main
diagonal and ones down the first superdiagonal. Such matrices are called λ-Jordan
matrices. These observations, along with the Fundamental Decomposition Theorem
and the Cyclic Nilpotent Theorem combine to establish:
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1.7 Jordan’s Theorem. Suppose T is any linear transformation on a finite dimen-
sional complex vector space V , and suppose λ1, . . . , λm are the distinct eigenvalues of
T . Then V has a basis with respect to which the matrix of T is block diagonal, where
each block is a Jordan λj-matrix, and every eigenvalue λj is represented by at least
one such block.

The matrix produced in the last theorem is called the Jordan canonical matrix for T .
Up to the order in which the Jordan λj-blocks occur, it is uniquely determined by T .

If T is the left-multiplication operator on Fn associated with an n by n F-matrix
A, then the Jordan canonical matrix for T is called the Jordan canonical form of A.

2 Toward the proof of (*).

Here, in detail, is the statement of the result we need to prove.

2.1 The Nilpotent-Splitting Theorem. Suppose V is a real or complex vector
space (not necessarily finite dimensional), and T ∈ L(V ) is nilpotent of index m. Let
x be a vector in V with Tm−1x 6= 0. Let V1 be the span of the list (x, Tx, . . . , Tm−1x)
(so V1 is T -invariant). Then there is a subspace W1 of V that is T -invariant, such
that V = V1 ⊕W1.

We will get serious about the proof of this result in the next section. The task will be
made considerably easier if we first negotiate some easy preliminaries about inverse
images. For the rest of this section V is any vector space and T ∈ L(V ). We begin
with a familiar definition.

2.2 Definition. If S is a subset of V , then

T−1(S) = {x ∈ V : Tx ∈ S}.

In words, T−1(S) is the set of vectors that T sends into S.
We will need some special properties of the inverse image of T when it acts on

subspaces of V . We begin with a simple exercise.

2.3 Exercise. Suppose W is a subspace of V . Then

(a) T−1(W ) is a subspace of V that contains nullT .

(b) T (T−1(W )) = W . (Does this require that W be a subspace?)

(c) W is T -invariant if and only if W ⊂ T−1(W ).
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2.4 Proposition. T−1(T (W )) = W + null (T ).

Proof. T (W ) is a subspace of V , so by part (a) of the last Exercise, so is T
−1

(T (W )).
Clearly T

−1
(T (W )) contains W , and by part (a) of Exercise 2.3 it also contains nullT .

Because it is a subspace, it therefore contains W + nullT .
Conversely, suppose x ∈ T

−1
(T (W )). then Tx ∈ T (W ), so Tx = Tw for some

w ∈ W . By linearity, T (x− w) = 0, i.e. x− w ∈ nullT , so

x = w + (x− w) ∈ W + nullT,

which completes the proof. ///

2.5 Proposition. If W is a T -invariant subspace of V , then so is T
−1

(W ).

Proof. This follows from the containments:

T (T−1(W )) = W ⊂ W + nullT ⊂ T−1(W ),

in which the first is just part (b) of Exercise 2.3, the second is obvious, and the third
follows from parts (a) and (c) of Exercise 2.3. ///

3 Proof of the Nilpotent Splitting Theorem.

The situation: We are given a nilpotent linear transformation T on a vector space
V , which need not be finite dimensional. Since m is the index of nilpotence of T ,
there exists a vector x1 ∈ V such that Tm−1x1 6= 0. We know from the Key Lemma
(Lemma 1.1 that the list (x1, . . . , T

m−1x1) is linearly independent, and that its linear
span V1 is T -invariant.

To find: A T -invariant subspace W1 of V such that V = V1 ⊕W1.

The proof proceeds by induction on m, the index of nilpotence.

The case m = 1. In this case T is the zero-operator on V , so x1 is any non-zero
vector in V , V1 = span (x1), and we can take W1 to be any subspace of V that is
complementary to V1 (every subspace of V is invariant for the zero-operator).

The Induction Hypothesis. Suppose m > 1 and suppose the result is true for all
operators that are nilpotent of index m− 1. The proof now proceeds in four steps.

Step I: Pushing Down. We focus on ranT , which you can easily check is an invariant
subspace for T on which T is nilpotent of index m−1, and which is clearly the span of
the linearly independent list (Tx1, . . . , T

m−1x1) = (y1, . . . , T
m−2y1), where y1 = Tx1.

So we may apply the induction hypothesis to the restriction of T to ranT , with V1

replaced by the subspace

Y1 = span (y1, . . . , T
m−2y1). (1)

The result is a T -invariant subspace Y2 of ranT such that

ranT = Y1 ⊕ Y2 (2)
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Step II. Pulling Back. We claim that:

V = V1 + T−1(Y2). (3)

To prove this we write equation (2) as T (V ) = T (V1)⊕ Y2, and distribute the inverse
image of T over the sum (Exercise: prove that this is legal) to get:

V = T−1(T (V1)) + T−1(Y2).

Now by Proposition 2.4 we have T−1(T (V1)) = V1 + nullT , hence

V = V1 + nullT + T−1(Y2).

Since nullT is a subspace of T−1(Y2), the right-hand side of the last equation is just
V1 + T−1(Y2), which proves (3).

Equation (3) is a step in the right direction, since it splits V into the sum of V1

and the subspace T−1(Y2) which is also T -invariant (by the T -invariance of Y2 and
Proposition 2.5). Unfortunately T−1(Y2) may have nontrivial intersection with V1, so
it is not, in general, a complement for V1. The rest of the argument seeks to remedy
this deficiency by “cutting out the excess” from T−1(Y2).

Step III: An important trivial intersection. We claim that, even though V1 and
T−1(Y2) may have nontrivial intersection, there is still this bit of good news:

V1 ∩ Y2 = {0}. (4)

To prove this, note that:

T (V1 ∩ Y2) = T (V1) ∩ T (Y2)

⊂ Y1 ∩ Y2

= {0},

where the first equality is a general property of mappings (can you prove it?), and the
second follows from the fact that T (V1) = Y1 (definition of Y1) and the T -invariance
of Y2. This shows that V1 ∩ Y2 ⊂ nullT , or more precisely:

V1 ∩ Y2 ⊂ nullT ∩ V1 (5)

Now recall the definition of V1:

V1 = span (x1, . . . , T
m−1x1)

where Tm−1x1 6= 0, but Tmx1 = 0 (recall that Tm is the zero-operator). From this
it’s immediate that the only vectors in V1 that T annihilates are the scalar multiples
of Tm−1x, in other words:

null (T ) ∩ V1 = span (Tm−1x) = span (Tm−2y) ⊂ Y1,
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where the last containment follows from our assumption that m > 1.
Summarizing:

V1 ∩ Y2 ⊂ nullT ∩ V1 ⊂ Y1,

hence
V1 ∩ Y2 ⊂ Y1 ∩ Y2 = {0},

as promised.

Step IV: Excising the excess. Let’s summarize what we have so far. We began with
a T -invariant subspace V1 on which our nilpotent operator T is cyclic, and have:

(a) Produced a T -invariant subspace Y2 of T (V ) that is complementary to Y1 =
T (V1).

(b) Proved that V = V1 + T−1(Y2), where T−1(Y2) is T -invariant, but may unfor-
tunately intersect V1.

(c) Proved that nevertheless V1 ∩ Y2 = {0}.

Recall that Y2 ⊂ T−1(Y2) (just a restatement of the T -invariance of Y2). By (c) above,
V1 ∩ T−1(Y2) intersects Y2 in the zero-subspace, so if we let Z be any complement of
the sum of these two subspaces in T−1(Y2) we have

T−1(Y2) = Y2 ⊕ (V1 ∩ T−1(Y2))⊕ Z. (6)

Thus:

V = V1 + T−1(Y2), restating (b) above

= V1 + Y2 + (V1 ∩ T−1(Y2)) + Z, by (6)

= V1 + Y2 + Z, since V1 ∩ T−1(Y2) ⊂ V1.

Now by its definition, Y2 + Z (= Y2 ⊕ Z) lies in T−1(Y2), and it has only trivial
intersection with V1 ∩ T−1(Y2). Thus it has only trivial intersection with V1, hence
V = V1 ⊕ Y2 ⊕ Z.

We claim that V2 = Y2 ⊕ Z, is the subspace we seek. We have just shown that
V = V1 ⊕ V2, so it only remains to show that V2 is T -invariant. But this is easy:
we already know Y2 is T -invariant, and although our choice of Z might have seemed
arbitrary, it is a subspace of T−1(Y2) so its image under T lies in Y2. Thus T (V2) ⊂
Y2 ⊂ V2, which finishes the proof. ///
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