Name: ______ Math 415, Summer II 2013 Quiz #5 (Take-home): Due 08–14–13, 5PM.

For each of the following questions, precisely state an argument justifying your reasoning. You may *discuss* these problems with other students in the class only. Each write-up should be in your own words and written *by yourself*.

1. Fit a linear function of the form, $p(t) = c_0 + c_1 t$ to the data points (0,3), (1,3), (1,6) using least squares. Sketch your solution.

2. Consider the space $\mathbb{R}_1[t]$ of polynomials of degree at most one. Define an inner product on this space by

$$\langle f|g \rangle := rac{1}{2} \left(f(0)g(0) + f(1)g(1) \right).$$

Find an orthonormal basis for this inner product space.

3. Suppose $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_m}$ is a collection of non-zero orthogonal vectors in an inner product space V. Show that \mathcal{B} is linearly independent. Show, by example, that the converse is not true.