Math 421
Spring 2014

Homework 9
"Partial derivatives and partial integration"

Assigned: Monday, April 14th
Due: Friday, April 18th

Directions:

- Volunteers will be asked to present solutions in class.
- Each solution you present will count towards your final homework grade.

WARMUP PROBLEMS (Not to be turned in)

1. True or False. If $f: E \rightarrow \mathbb{R}^{m}$ is uniformly continuous, then E is compact.
2. True or False. If E is not open, then E is closed.
3. True or False. If $f: E \rightarrow \mathbb{R}^{m}$ is continuous, then f is uniformly continuous (on E) if and only if E is compact.
4. If $f:[a, b] \times[c, d] \rightarrow \mathbb{R}$ is continuous, prove that $F(y)=\int_{a}^{b} f(x, y) d x$ is continuous on $[c, d]$.

HOMEWORK EXERCISES

1. Suppose $H=[a, b] \times[c, d]$ is a rectangle, and $k: H \rightarrow \mathbb{R}$ is continuous, and $g:[a, b] \rightarrow \mathbb{R}$ is integrable. Prove that

$$
F(y)=\int_{a}^{b} g(x) k(x, y) d x
$$

is uniformly continuous on $[a, b]$. Hint: you may use the fact that H is compact. Such a k is oftentimes called a "kernel," and is commonplace when constructing integral solutions to differential equations.
2. Construct all of the partial derivatives of

$$
f(x, y, z)=\left(\frac{x}{y}, \sin (x z-2 \pi y), \tan ^{-1}\left(z^{2}\right)\right)^{T}
$$

Note that all of the single variable rules (product rule, chain rule, etc.) carry over to partial derivatives when you consider freezing every other variable.
3. Compute all mixed second-order partial derivatives of the following function, and verify that the mixed partial derivatives are equal:
(a) $f(x, y)=x e^{y}$.
(b) $f(x, y)=\cos (x y)$.
4. If $A \subseteq \mathbb{R}^{n}$ is an open set, and $f: A \rightarrow \mathbb{R}$ obtains a max (or minumum) at $\mathbf{x}=\mathbf{a} \in A$ and $\frac{\partial f}{\partial x_{j}}(\mathbf{a})$ exists for each j, prove that $\frac{\partial f}{\partial x_{j}}=0$. Is the converse true?
5. Suppose $g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function. Find the partial derivatives of the following functions
(a) $f(x, y)=\int_{a}^{x+y} g(s) d s$.
(b) $f(x, y)=\int_{x}^{y} g(s) d s$.
6. A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is independent of the second variable if for each $x \in \mathbb{R}$, we have $f\left(x, y_{1}\right)=f\left(x, y_{2}\right)$ for all $y_{1}, y_{2} \in \mathbb{R}$. Show that f is independent of the second variable if and only if there is a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x, y)=g(x)$. What is $\frac{\partial f}{\partial x}$ in terms of g ?
7. If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, and $\frac{\partial f}{\partial x_{2}}=0$ for all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, show $f\left(x_{1}, x_{2}\right)=g\left(x_{1}\right)$ for some g. That is, show that f is independent of the second variable. If $\frac{\partial f}{\partial x_{1}}=\frac{\partial f}{\partial x_{2}}=0$, show that f is constant.
8. For each of the following functions f, find the matrix representation of a linear transformation $T \in \mathcal{L}\left(\mathbb{R}, \mathbb{R}^{m}\right)$ such that

$$
\lim _{h \rightarrow 0} \frac{\|f(x+h)-f(x)-T(h)\|}{h}=0 .
$$

(a) $f(x)=\left(x^{2}, \sin (x)\right)$.
(b) $f(x)=\left(e^{x}, x^{1 / 3}, 1-x^{2}\right)$.
9. Let $T \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$, and recall the definition of the operator norm,

$$
\|T\|:=\sup _{\mathbf{x} \neq 0} \frac{\|T(\mathbf{x})\|}{\|\mathbf{x}\|} .
$$

(a) Show that the supremum need only be taken over the unit sphere. That is, prove that $\sup _{\|\mathbf{x}\|=1}\|T(\mathbf{x})\|=\|T\|$.
(b) Define

$$
m:=\inf \{C>0:\|T(\mathbf{x})\| \leq C\|\mathbf{x}\| \quad \text { for all } \mathbf{x}\} .
$$

Prove that $m=\|T\|$.

