Math 421
Spring 2014

Homework 8
"Continuity and limits: Part II"

Assigned: Thursday, March 27
Due: Wednesday, April 2

Directions:

- Volunteers will be asked to present solutions in class.
- Each solution you present will count towards your final homework grade.

WARMUP PROBLEMS (Not to be turned in)

1. Compare and contrast the definitions of a limit, and continuity at a point. Specifically, what sort of domains do we consider when looking at continuity vs. limits?

HOMEWORK EXERCISES

1. [The sequential characterization of limits of functions] Suppose $f: V \backslash\{\mathbf{a}\} \rightarrow \mathbb{R}^{m}$, where V is an open subset of \mathbb{R}^{n}, and $\mathbf{a} \in V$. Prove that $\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=L$ if an only if $\lim _{k \rightarrow \infty} f\left(\mathbf{x}_{k}\right)=L$ for every sequence $\mathbf{x}_{k} \in V \backslash\{\mathbf{a}\}$ that satisfies $\lim _{k \rightarrow \infty} \mathbf{x}_{k}=\mathbf{a}$.
2. [The sequential charactization of continuity] Suppose $f: E \rightarrow \mathbb{R}^{m}$. Prove that f is continuous at $\mathbf{a} \in E$ if an only if $\lim _{k \rightarrow \infty} f\left(\mathbf{x}_{k}\right)=f(\mathbf{a})$ for every sequence $\mathbf{x}_{k} \in E$ that satisfies $\lim _{k \rightarrow \infty} \mathbf{x}_{k}=\mathbf{a}$. Compare with the results of problem 1.
3. Suppose $f: E \rightarrow \mathbb{R}^{m}$, where $E \subseteq \mathbb{R}^{n}$ is a closed set. Prove that f is continuous on E if and only if $f^{-1}(C)$ is closed for every closed set $C \subseteq \mathbb{R}^{m}$.
4. Consider $f, g: \mathbb{R} \rightarrow \mathbb{R}$, where $f(x)=\sin (x)$, and $g(x)=x /|x|$ if $x \neq 0$, and $g(0)=0$.
(a) Define $E_{1}=(0, \pi), E_{2}=[0, \pi], E_{3}=(-1,1)$ and $E_{4}=[-1,1]$. For $j=1, \ldots 4$, compute $f\left(E_{j}\right)$ and $g\left(E_{j}\right)$. What conclusions can you draw about the images of connected/closed/open sets?
(b) Define $F_{1}=(0,1), F_{2}=[0,1], F_{3}=(-1,1)$ and $F_{4}=[-1,1]$. For $j=1, \ldots 4$, compute $f^{-1}\left(F_{j}\right)$ and $g^{-1}\left(F_{j}\right)$. What conclusions can you draw about the inverse images of connected/closed/open sets?
5. Let H be a non-empy, compact subset of \mathbb{R}^{n}.
(a) If $f: H \rightarrow \mathbb{R}^{m}$ is a function, we define

$$
\|f\|_{H}:=\sup \{\|f(\mathbf{x})\|: \mathbf{x} \in H\}
$$

Show that if f is continuous, then there exists an $\mathbf{x}^{*} \in H$ such that $\|f\|_{H}=\left\|f\left(\mathbf{x}^{*}\right)\right\|$.
(b) Consider the following definition, which is the multi-variable extension of what you have already seen in the single variable case.

Definition 1 We say a sequence of functions $f_{k}: H \rightarrow \mathbb{R}^{m}$ converge uniformly to $f: H \rightarrow \mathbb{R}^{n}$ if for every $\epsilon>0$, there exists an $N \in \mathbb{Z}_{\geq 1}$ such that for every $\mathbf{x} \in H$ and $k \geq N$, we have $\left\|f_{k}(\mathbf{x})-f(\mathbf{x})\right\|<\epsilon$.

Show that $\left\|f_{k}-f\right\|_{H} \rightarrow 0$ if and only if f_{k} converge to f uniformly.
6. Show that $\left\|f_{k}-f\right\|_{H} \rightarrow 0$ if and only if for every $\epsilon>0$, there exists an $N \in \mathbb{Z}_{\geq 1}$ such that $k, j \geq N$ implies $\left\|f_{k}-f_{j}\right\|_{H}<\epsilon$.
7. Using the new topological tools that we have, construct a shorter proof of the following theorem, which appeared in homework 1: If $f \geq 0$ is continuous on $[a, b]$, prove that $\int_{a}^{b} f(x) d x=0$ if and only if $f(x)=0$ for all $x \in[a, b]$.
8. Suppose $H=[a, b] \times[c, d]$ is a rectangle, and $f: H \rightarrow \mathbb{R}$ is continuous, and $g:[a, b] \rightarrow \mathbb{R}$ is integrable. Prove that

$$
F(y)=\int_{a}^{b} g(x) f(x, y) d x
$$

is uniformly continuous on $[a, b]$. Hint: you may use the fact that H is compact.

