Directions:

- Volunteers will be asked to present solutions in class.
- Each solution you present will count towards your final homework grade.

WARMUP PROBLEMS (Not to be turned in)

- 1. Suppose $\{\mathbf{x}_k\}$ and $\{\mathbf{y}_k\}$ are sequences in \mathbb{R}^n that satisfy $\lim_{k\to\infty} \|\mathbf{x}_k \mathbf{y}_k\| = 0$.
 - (a) Does $\lim_{k\to\infty} \mathbf{x}_k = \lim_{k\to\infty} \mathbf{y}_k$?
 - (b) If both sequences are bounded, does $\lim_{k\to\infty} \mathbf{x}_k = \lim_{k\to\infty} \mathbf{y}_k$?
 - (c) Prove that $\lim_{k_j\to\infty} \mathbf{x}_{k_j} = \lim_{k_j\to\infty} \mathbf{y}_{k_j}$ for some subsequence.
- 2. True or False. If f is continuous at $\mathbf{a} \in \mathbb{R}^n$, does $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = f(\mathbf{a})$?

HOMEWORK EXERCISES

- 1. Suppose $f: V \setminus \{\mathbf{a}\} \to \mathbb{R}^m$. Prove that $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = L$ if an only if there exists an open set $U \subseteq V \subseteq \mathbb{R}^n$ with $\mathbf{a} \in U$ such that $\lim_{k\to\infty} f(\mathbf{x}_k) = L$ for every sequence $\mathbf{x}_k \in U \setminus \{\mathbf{a}\}$ that satisfies $\lim_{k\to\infty} \mathbf{x}_k = \mathbf{a}$.
- 2. Prove that $\lim_{(x,y)\to(0,0)} f(x,y)$ exists, where $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2$ is defined by

$$f(x,y) = \frac{x^3 - y^3}{x^2 + y^2}.$$

3. Prove that $\lim_{(x,y)\to(0,0)} f(x,y)$ exists, where $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2$ is defined by

$$f(x,y) = \frac{|x|^{\alpha}y^4}{x^2 + y^4},$$

and $\alpha > 0$ is a fixed positive number. Does the same limit exist if $\alpha = 0$?

- 4. Suppose $f: E \to \mathbb{R}^m$. Prove that f is continuous at \mathbf{a} if an only if there exists a relatively open set $U \subseteq \mathbb{R}^n$ with $\mathbf{a} \in U$ such that $\lim_{k\to\infty} f(\mathbf{x}_k) = f(\mathbf{a})$ for every sequence $\mathbf{x}_k \in U$ that satisfies $\lim_{k\to\infty} \mathbf{x}_k = \mathbf{a}$. Compare with the results of problem 1.
- 5. Suppose $f: X \to Y$ is a function, where X and Y are arbitrary sets. Prove or disprove the following identities.

(a) If $A_{\alpha} \subseteq Y$, $\alpha \in \mathcal{A}$ is a collection of sets, then

$$\bigcup_{\alpha \in \mathcal{A}} f^{-1}(A_{\alpha}) = f^{-1}\left(\bigcup_{\alpha \in \mathcal{A}} A_{\alpha}\right).$$

(b) If $B_{\beta} \subseteq X$, $\beta \in \mathcal{B}$ is a collection of sets, then

$$\bigcup_{\beta \in \mathcal{B}} f(B_{\beta}) = f\left(\bigcup_{\beta \in \mathcal{B}} B_{\beta}\right).$$

If either of these are not true, prove set inclusion if it exists.

- 6. Suppose $f: X \to Y$ is a function, where X and Y are arbitrary sets. Prove or disprove the following identities.
 - (a) If $A_{\alpha} \subseteq Y$, $\alpha \in \mathcal{A}$ is a collection of sets, then

$$\bigcap_{\alpha \in \mathcal{A}} f^{-1}(A_{\alpha}) = f^{-1}\left(\bigcap_{\alpha \in \mathcal{A}} A_{\alpha}\right).$$

(b) If $B_{\beta} \subseteq X$, $\beta \in \mathcal{B}$ is a collection of sets, then

$$\bigcap_{\beta \in \mathcal{B}} f(B_{\beta}) = f\left(\bigcap_{\beta \in \mathcal{B}} B_{\beta}\right)$$

If either of these are not true, prove set inclusion if it exists.

- 7. Consider $f, g: \mathbb{R} \to \mathbb{R}$, where $f(x) = \sin(x)$, and g(x) = x/|x| if $x \neq 0$, and g(0) = 0.
 - (a) Define $E_1 = (0, \pi)$, $E_2 = [0, \pi]$, $E_3 = (-1, 1)$ and $E_4 = [-1, 1]$. For $j = 1, \ldots 4$, compute $f(E_j)$ and $g(E_j)$. What conclusions can you draw about the images of closed/open sets?
 - (b) Define $F_1 = (0, 1)$, $F_2 = [0, 1]$, $F_3 = (-1, 1)$ and $F_4 = [-1, 1]$. For $j = 1, \ldots 4$, compute $f^{-1}(F_j)$ and $g^{-1}(F_j)$. What conclusions can you draw about the inverse images of closed/open sets?
- 8. Suppose $A \subseteq \mathbb{R}^n$ is an open set, and $f : A \to \mathbb{R}^m$. Prove that f is continuous on A if and only if $f^{-1}(V)$ is open for every open set $V \subseteq \mathbb{R}^m$. What's the difference between this theorem and Thm. 9.26?
- 9. The problem is an extension of the previous problem. It says that we need only concern ourselves with the inverse image of basis elements that generate the topology of \mathbb{R}^m . Suppose $A \subseteq \mathbb{R}^n$ is an open set, and $f: A \to \mathbb{R}^m$. Prove that f is continuos on A if and only if $f^{-1}(B_{\epsilon}(\mathbf{x}))$ is open for every point $\mathbf{x} \in \mathbb{R}^m$ and $\epsilon > 0$.