Math 421
Homework 6
Assigned: Monday, March 10
Spring 2014 "Heine-Borel and Limits"
Due: Friday, March 14

Directions:

- Volunteers will be asked to present solutions in class.
- Each solution you present will count towards your final homework grade.

HOMEWORK EXERCISES

1. Suppose K is compact in \mathbb{R}^{n}, and $E \subseteq K$. Prove that E is compact if and only if E is closed.
2. Suppose K is compact in \mathbb{R}^{n}, and for every $\mathbf{x} \in K$, there is an $r=r(\mathbf{x})>0$ such that $B_{r}(\mathbf{x}) \cap K=\{\mathbf{x}\}$. Prove that K is a finite set.
3. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, and $K \subseteq \mathbb{R}^{n}$ is compact and connected. For each \mathbf{x}, suppose there exists a $\delta=\delta(\mathbf{x})>0$ such that $f(\mathbf{x})=f(\mathbf{y})$ for all $\mathbf{y} \in B_{\delta(\mathbf{x})}(\mathbf{x})$. Prove that f is constant on K.
Note: This is an excellent example of a "local" to "global" result ${ }^{1}$.
4. Recall that we defined the distance between a point $\mathbf{x} \in \mathbb{R}^{n}$ and a set $A \subseteq \mathbb{R}^{n}$ as

$$
d(A, \mathbf{x}):=\inf \{\|\mathbf{x}-\mathbf{y}\|: \mathbf{y} \in A\}
$$

Define the distance between two sets $A, B \subseteq \mathbb{R}^{n}$ as

$$
d(A, B):=\inf \{\|\mathbf{x}-\mathbf{y}\|: \mathbf{x} \in A, \mathbf{y} \in B\}
$$

(a) Prove that if A and B are compact sets that satisfy $A \cap B=\emptyset$, then $d(A, B)>0$.
(b) Show that there exist nonempty, closed sets $A, B \subset \mathbb{R}^{2}$ such that $A \cap B=\emptyset$, but $d(A, B)=0$.
5. Consider the function

$$
f(x, y)=\left(\frac{x-1}{y-1}, x+2\right)
$$

whose domain is yet to be determined.
(a) Identify the co-domain ${ }^{2}$ of f.
(b) Find the largest domain E, where the above expression for f makes sense. This is often considered the "natural domain", or the "maximal domain" of f.

[^0](c) Compute $\lim _{(x, y) \rightarrow(1,-1)} f(x, y)$. You do not need a formal $\epsilon-\delta$ proof if you cite the correct theorems.
6. Consider the function
$$
f(x, y)=\left(\frac{y \sin (x)}{x}, \tan \left(\frac{x}{y}\right), x^{2}+y^{2}-x y\right)
$$
whose domain is yet to be determined.
(a) Identify the co-domain of f.
(b) As in the previous problem, find the natural domain of f.
(c) Compute $\lim _{(x, y) \rightarrow(1,-1)} f(x, y)$. Again, there is no need for a formal $\epsilon-\delta$ proof.
7. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, and $\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=L$, where $\mathbf{a} \in \mathbb{R}^{n}$, and $L \in \mathbb{R}^{m}$. Prove that there exists a constant M and an open set V with $\mathbf{a} \in V$ such that $\|f(\mathbf{x})\| \leq M$ for all $\mathrm{x} \in V$.

[^0]: ${ }^{1}$ In general, if you don't assume that K is connected, you can show that f is constant on every connected component of K
 ${ }^{2}$ I prefer the term "target space" in place of co-domain.

