Math 421 Homework 10
Spring 2014 "Differentiation"

Assigned: Tuesday, April 22nd
Due: Friday, April 25th

Directions:

- Volunteers will be asked to present solutions in class.

WARMUP PROBLEMS (Not to be turned in)

1. Write down the definition of a partial derivative.
2. Write down the definition of the (total) derivative. Compare with your answer to part 1.

HOMEWORK EXERCISES

1. A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is independent of the second variable if for each $x \in \mathbb{R}$, we have $f\left(x, y_{1}\right)=f\left(x, y_{2}\right)$ for all $y_{1}, y_{2} \in \mathbb{R}$. Show that f is independent of the second variable if and only if there is a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x, y)=g(x)$. What is $\frac{\partial f}{\partial x}$ in terms of g ?
2. If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, and $\frac{\partial f}{\partial x_{2}}=0$ for all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, show $f\left(x_{1}, x_{2}\right)=g\left(x_{1}\right)$ for some g. That is, show that f is independent of the second variable. If $\frac{\partial f}{\partial x_{1}}=\frac{\partial f}{\partial x_{2}}=0$, show that f is constant.
3. For each of the following functions f, find the matrix representation of a linear transformation $T \in \mathcal{L}\left(\mathbb{R}, \mathbb{R}^{m}\right)$ such that

$$
\lim _{h \rightarrow 0} \frac{\|f(x+h)-f(x)-T(h)\|}{h}=0 .
$$

(a) $f(x)=\left(x^{2}, \sin (x)\right)^{T}$.
(b) $f(x)=\left(e^{x}, x^{1 / 3}, 1-x^{2}\right)^{T}$.
4. Let $T \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$, and recall the definition of the operator norm,

$$
\|T\|:=\sup _{\mathbf{x} \neq 0} \frac{\|T(\mathbf{x})\|}{\|\mathbf{x}\|}
$$

(a) Show that the supremum need only be taken over the unit sphere. That is, prove that $\sup _{\|\mathbf{x}\|=1}\|T(\mathbf{x})\|=\|T\|$.
(b) Define

$$
m:=\inf \{C>0:\|T(\mathbf{x})\| \leq C\|\mathbf{x}\| \quad \text { for all } \mathbf{x}\}
$$

Prove that $m=\|T\|$.
5. Suppose $T \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ is a linear function. Prove that $D T(\mathbf{a})=T$ for all $\mathbf{a} \in \mathbb{R}^{n}$.
6. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar function, we define the directional derivative as

$$
D_{\mathbf{v}} f(\mathbf{a}):=\lim _{t \rightarrow 0} \frac{f(\mathbf{a}+t \mathbf{v})-f(\mathbf{a})}{t}
$$

provided this limit exists.
(a) Show that $D_{\mathbf{e}_{i}} f(\mathbf{a})=\frac{\partial f}{\partial x_{i}}(\mathbf{a})$, provided both limits exist. Conclude that directional derivatives extend the definitions of partial derivatives.
(b) If $c \in \mathbb{R}$ is a scalar, show that $D_{c \mathbf{v}} f(\mathbf{a})=c D_{\mathbf{v}} f(\mathbf{a})$, provided the directional derivative exists.
(c) If f is differentiable at \mathbf{a}, show that $D_{\mathbf{v}} f(\mathbf{a})=D f(\mathbf{a}) \mathbf{v}$, where the left hand side denotes the directional derivative, and the right hand side denotes the multiplication of the total derivative against \mathbf{v}.
7. Two functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are considered to be equal up to nth-order at a if

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-g(a+h)}{h^{n}}=0 .
$$

(a) Show that f is differentable at a if and only if there is a function g of the form $g(x)=a_{0}+a_{1}(x-a)$ such that f and g are equal up to first order at $x=a$.
(b) If $f^{\prime}(a), f^{\prime \prime}(a), \ldots f^{(n)}(a)$ exist, show that f and the function g defined by

$$
g(x)=\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i}
$$

are equal up to $n t h$-order at a. Hint: re-write the limit as $\lim _{x \rightarrow a}$ and use L'Hôspital's rule.
8. Suppose $f: V \rightarrow \mathbb{R}$ is a function defined on an open set V containing the origin. Suppose further that $|f(\mathbf{x})| \leq\|\mathbf{x}\|^{\alpha}$, where $\alpha>1$ is a scalar. Prove that f is differentiable at the origin. What happens when you assume $\alpha=1$?

