SECTION 4.4

DAVID SEAL

4-4, #8 Show that an inverse of a modulo m, where a is an integer and m > 2 is a positive integer, does not exist if gcd(a, m) > 1.

Here I'll present two proofs of this problem. The first one uses some nice tools that we have at our disposal, and the second one is somewhat shorter.

Proof (I): If $k \ge 1$ is an integer, consider the sets

$$A = \{d : d | a \wedge d | m\}, \text{ and } B = \{d : d | ak \wedge d | m\}$$

If $d \in A$, then $d \in B$ since d|a implies d|ak. Therefore $A \subseteq B$, and we can conclude that $gcd(a, m) \leq gcd(ak, m)$, since the gcd is defined as the largest member of each of these sets. Therefore, for every for every positive integer k, we have

$$1 < \gcd(a, m) \le \gcd(ak, m).$$

Suppose, for the sake of a contradiction, that $k \ge 1$ were an inverse of a. This means that $ak \equiv 1 \pmod{m}$. This relationship tells us that there exists a $q \in \mathbb{Z}$, with

$$ak = qm + 1.$$

Given this relationship, we know that

$$1 < \gcd(ak, m) = \gcd(m, 1) = 1.$$

This is a contradiction, and therefore no such k can exist.

Actually, here is a much shorter proof.

Proof (II): In this proof, we'll prove the contrapositive. That is, if a has an inverse, then gcd(a, m) = 1.

Suppose $ak \equiv 1 \pmod{m}$. Then, there exists, q such that

$$ak = qm + 1.$$

With d = gcd(a, m), we know that d divides both a and m. Therefore, d divides any linear combination of a and m, and hence d divides

$$1 = ak - qm.$$

Since d divides 1, the largest it could possibly be is the number 1 itself.