Directions:

- Print out this piece of paper and use it as a cover sheet. Write your name in the upper right hand corner.
- Your homework should be stapled and each problem should occur in order.
- Do not hand in scratch work.
- Homework is due at the start of class.

1. Problems

- 1. Textbook exercises: 12.49, 12.55.
- 2. If a_n is a sequence with $\lim_{n\to\infty} a_n = 0$, prove that $\lim_{n\to\infty} a_n^2 = 0$.
- 3. Suppose $\{a_n\}$ is a sequence of positive real numbers that converges to a. Prove that $a \ge 0$. *Hint:* try a proof by contradiction.
- 4. Suppose $\{a_n\}$ is a sequence of positive real numbers, and that $\lim_{n\to\infty} a_n = a > 0$. Prove that $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{a}$. *Hint:* "irrationalize the denominator."
- 5. Define the sequence $a_1 = 1$, and $a_{n+1} = 5a_n^4$ for all $n \ge 1$.
 - (a) If $a = \lim_{n \to \infty} a_n$, exists, prove that a = 0 or a = 1/5.
 - (b) Does $a = \lim_{n \to \infty} a_n$ exist?
 - (c) Do parts (a) and (b) present a contradiction?
- 6. Find an example of a convergent sequence $\{s_n\}$ of irrational numbers that has a rational number as a limit.