1. Describe the elements of the set $(\mathbb{Z} \times \mathbb{Q}) \cap \mathbb{R} \times \mathbb{N}$. Is this set countable or uncountable?

Solution: The set is equal to $\{(x,y) \mid x \in \mathbb{Z}, y \in \mathbb{N}\} = \mathbb{Z} \times \mathbb{N}$. Since the Cartesian product of two denumerable sets is denumerable, this set is denumerable, hence countable.

2. Let $A = \{\emptyset, \{\emptyset\}\}$. What is the cardinality of A? Is $\emptyset \subset A$? Is $\emptyset \in A$? Is $\{\emptyset\} \subset A$? Is $\{\emptyset\} \in A$? Is $\{\emptyset\} \in A$? Is $\{\emptyset\} \in A$?

Solution: |A| = 2; it has two elements: \emptyset and $\{\emptyset\}$. The answers to the remaining questions are yes, yes, yes, yes, no.

3. List the elements of the set $A \times B$ where A is the set in the previous question and $B = \{1, 2\}$.

Solution: $A \times B = \{(\emptyset, 1), (\emptyset, 2), (\{\emptyset\}, 1), (\{\emptyset\}, 2)\}.$

4. Suppose that A, B, and C are sets. Which of the following statements is true for all sets A, B, and C? For each, either prove the statement or give a counterexample: $(A \cap B) \cup C = A \cap (B \cup C),$ $A \cap B \subseteq A \cup B,$ if $A \subset B$ then $A \times A \subset A \times B,$ $\overline{A} \cap \overline{B} \cap \overline{C} = \overline{A \cup B \cup C}.$

Solution: $(A \cap B) \cup C \neq A \cap (B \cup C)$ in general; a counterexample is

$$A = \{1, 2\}, B = \{1, 3\}, C = \{1, 4\}.$$
 Then $(A \cap B) \cup C = \{1, 4\},$ whereas $A \cap (B \cup C) = \{1\}.$

 $A\cap B\subset A\cup B$ is true. If $x\in A\cap B$, then $x\in A$. So, $x\in A\cup B$.

 $A \subset B \implies A \times A \subset A \times B$ is true. If $(x,y) \in A \times A$, then $x,y \in A$. Therefore, $y \in B$. Therefore, $(x,y) \in A \times B$.

 $\overline{A} \cap \overline{B} \cap \overline{C} = \overline{A \cup B \cup C}$ is true. Recall that \cap and \cup satisfy associative laws. Thus,

$$\overline{A} \cap \overline{B} \cap \overline{C} = (\overline{A} \cap \overline{B}) \cap \overline{C} = \overline{A \cup B} \cap \overline{C},$$

by De Morgan's law. Another application of De Morgan's law yields

$$\overline{(A \cup B) \cup C} = \overline{A \cup B \cup C}.$$

- 5. State the negation of each of the following statements:
 - There exists a natural number m such that $m^3 m$ is not divisible by 3.
 - $\sqrt{3}$ is a rational number.
 - 1 is a negative integer.
 - 57 is a prime number.
- 6. Verify the following laws:

- (a) Let P,Q and R are statements. Then, $P \wedge (Q \vee R) \text{ and } (P \wedge Q) \vee (P \wedge R) \text{ are logically equivalent.}$
- (b) Let P and Q are statements. Then, $P\Rightarrow Q$ and $(\sim Q)\Rightarrow (\sim P)$ are logically equivalent.
- 7. Write the open statement P(x,y): "for all real x and y the value $(x-1)^2 + (y-3)^2$ is positive" using quantifiers. Is the quantified statement true or false? Explain.
- 8. Prove that 3x+7 is odd if and only if x is even. Solution: First, we will prove that if x is even, then 3x+7 is odd. Assume x is even. Then $\exists k \in \mathbb{Z}$ such that x=2k. Therefore, 3x+7=6k+7=2(3k+3)+1=2s+1, where $s=3k+3\in\mathbb{Z}$. Thus, 3x+7 is odd. Now, we need to prove that if 3x+7 is odd, then x is even. We are going to prove the equivalent, contrapositive statement. Assume x is odd. Then $\exists k \in \mathbb{Z}$ such that x=2k+1. Therefore, 3x+7=6k+3+7=2(3k+5)=2s, where $s=3k+5\in\mathbb{Z}$. Thus, 3x+7 is even. Thus, 3x+7 is odd if and only if x is even.
- 9. Prove that if a and b are positive numbers, the $\sqrt{ab} \leq \frac{a+b}{2}$. This is referred to as "Inequality between geometric and arithmetic mean."

Solution: Let $a, b \in \mathbb{R}^+$. Then $(a - b) \in \mathbb{R}$ and thus $(a - b)^{\geq}0$. The following inequalities are equivalent.

$$(a-b)^2 \ge 0$$

$$a^2 - 2ab + b^2 \ge 0$$

$$a^2 + 2ab + b^2 \ge 4ab$$

$$(a+b)^2 \ge 4ab$$

$$a+b \ge 2\sqrt{ab}$$

$$\frac{a+b}{2} \ge \sqrt{ab}.$$

Thus, we have arrived at the desired inequality, which holds true for all $a, b \in \mathbb{R}$.

10. Let A, B, and C be sets. Prove that $A \times (B \cap C) = (A \times B) \cap (A \times C)$. Solution: First, we will prove that $A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$. Let $(x, y) \in A \times (B \cap C)$ be an arbitrary element. Then, $x \in A$ and $y \in B$ and $y \in C$. Thus, $(x, y) \in A \times B$ and $(x, y) \in A \times C$. Therefore, $(x, y) \in (A \times B) \cap (A \times C)$. Thus, we can conclude that $A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$.

SS14

1

MTH299

Now, we need to prove that that $(A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$. Take an arbitrary element $(x,y) \in (A \times B) \cap (A \times C)$. Then, $(x,y) \in (A \times B)$ and $(x,y) \in (A \times C)$. Therefore, $x \in A$ and $y \in B$ and $y \in C$. Thus, $y \in B \cap C$, which implies $(x,y) \in A \times (B \cap C)$.

Since we have proven both inclusions, we can conclude the desired equality of sets, namely, $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

- 11. Let A, B, and C be sets. Prove that $(A B) \cap (A C) = A (B \cup C)$.
- 12. Suppose that x and y are real numbers. Prove that if x + y is irrational, then x is irrational or y is irrational.

Solution: We will instead prove the contrapositive statement, which is equivalent to the original one. Assume that $x \in \mathbb{Q}$ and $y \in \mathbb{Q}$. Then $\exists p,q,r,s \in \mathbb{Z}$ such that $x = \frac{p}{q}$ and $y = \frac{r}{s}$. Then

 $x+y=\frac{sp+qr}{sq}\in\mathbb{Z}$. (Alternatively, we can use the fact that Q is closed under addition.) Thus, if x and $y\in\mathbb{Q}$, then $x+y\in\mathbb{Q}$.

13. Let x be an irrational number. Prove that x^4 or x^5 is irrational.

Solution: We will instead prove the contrapositive statement, which is equivalent to the original one, namely, if x^4 and x^5 are rational, then x is rational. Clearly, if $x^5 = 0$, then x = 0, thus this case is trivial. Thus, assume that x^5 and $x^4 \in \mathbb{Q} - \{0\}$. Then $\exists p, q, r, s \in \mathbb{Z} - \{0\}$ such that $x^5 = \frac{p}{q}$ and $x^4 = \frac{r}{s}$. Thus, $x = \frac{x^5}{x^4} = \frac{ps}{qr} \in \mathbb{Q}$. This concludes the proof of the contrapositive statement, thus the original statement also holds true.

14. Use a proof by contradiction to prove the following.

There exist no natural numbers m such that $m^2 + m + 3$ is divisible by 4.

Hint: Consider two cases: n is even, and n is odd.

- 15. Let a,b be distinct primes. Then $\log_a(b)$ is irrational.
- 16. Prove or disprove the statement: there exists an integer n such that $n^2 3 = 2n$.
- 17. Prove or disprove the statement: there exists a real number x such that $x^4 + 2 = 2x^2$.
- 18. Prove that there exists a unique real number x such that $x^3 + 2 = 2x$.

- 19. Disprove that statement: There exists integers a and b such that $a^2 + b^2 \equiv 3 \pmod{4}$
- 20. Use induction to prove that $6|(n^3 + 5n)$ for all $n \ge 0$.
- 21. Use induction to prove that

$$1 \cdot 4 + 2 \cdot 7 + \dots + n(3n+1) = n(n+1)^2$$

for all $n \in \mathbb{N}$.

- 22. Use the Strong Principle of Mathematical Induction to prove that for each integer $n \ge 11$, there are nonnegative integers x and y such that n = 4x + 5y.
- 23. A sequence $\{a_n\}$ is defined recursively by $a_0=1,$ $a_1=-2$ and for $n\geq 1,$

$$a_{n+1} = 5a_n - 6a_{n-1}.$$

Prove that for $n \geq 0$,

$$a_n = 5 \times 2^n - 4 \times 3^n.$$

Solution: Since $a_0 = 5 \times 2^0 - 4 \times 3^0 = 5 - 4 = 1$, the formula holds for n = 0.

Suppose for some integer $k \geq 0$, $a_i = 5 \times 2^i - 4 \times 3^i$ for all integers i with $0 \leq i \leq k$. If k = 0, then

$$a_{k+1} = a_1 = 5 \times 2^1 - 4 \times 3^1 = 10 - 12 = -2.$$

So the formula holds for k+1.

Now we assume $k \ge 1$. Since $k + 1 \ge 2$, $k, k - 1 \ge 0$. Hence,

$$a_{k+1} = 5a_k - 6a_{k-1}$$

$$= 5(5 \times 2^k - 4 \times 3^k) - 6(5 \times 2^{k-1} - 4 \times 3^{k-1})$$

$$= 25 \times 2^k - 20 \times 3^k - 30 \times 2^{k-1} + 24 \times 3^{k-1}$$

$$= 25 \times 2^k - 20 \times 3^k - 15 \times 2^k + 8 \times 3^k$$

$$= 10 \times 2^k - 12 \times 3^k$$

$$= 5 \times 2^{k+1} - 4 \times 3^{k+1}.$$

So the formula also holds for k+1.

By the Strong Principle of Mathematical Induction, for every $n \geq 0$,

$$a_n = 5 \times 2^n - 4 \times 3^n.$$

SS14

2

24. Suppose R is an equivalence relation on a set A. Prove or disprove that R^{-1} is an equivalence relation on A.

Solution: If R is an equivalence relation, then so is $R^{-1} = \{(y, x) \in A \times A \mid (x, y) \in R\}.$

Proof 1: Let $a \in A$. Then since R is reflexive we have $(a,a) \in R$. It follows from the definition of R^{-1} that $(a,a) \in R^{-1}$, proving that R^{-1} is reflexive as well. To show that R^{-1} is symmetric, let $(a,b) \in R^{-1}$. Then by definition $(b,a) \in R$. Since R is symmetric, $(a,b) \in R$ as well, and so $(b,a) \in R^{-1}$. To prove that R^{-1} is transitive, let $(a,b),(b,c) \in R^{-1}$. Then $(b,a),(c,b) \in R$, and since R is symmetric, it follows that $(a,b),(b,c) \in R$. By the transitivity of R, we have $(a,c) \in R$ and so $(c,a) \in R^{-1}$. Finally, since R^{-1} is symmetric, it follows that $(a,c) \in R^{-1}$, which shows R^{-1} is transitive

Proof 2: We will show that $R = R^{-1}$, and so R^{-1} will automatically be an equivalence relation because we have assumed R is. Let $(a,b) \in R$. Since R is symmetric, $(b,a) \in R$. By the definition of R^{-1} it follows that $(a,b) \in R^{-1}$, which shows $R \subseteq R^{-1}$. The reverse inclusion is similar.

25. Consider the set $A = \{a, b, c, d\}$, and suppose R is an equivalence relation on A. If R contains the elements (a, b) and (b, d), what other elements must it contain?

Solution: In addition to (a,b) and (b,d), the equivalence relation R must contain

$$(a, a), (b, b), (c, c), (d, d)$$

 $(b, a), (d, b)$
 (a, d)
 (d, a)

The elements in the first row appear due to reflexivity; the elements in the second are due to symmetry; the element in the third row is due to transitivity; the element in the last row is due to symmetry from the previous row.

26. Let $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2\}$. Find a relation on $A \times B$ that is transitive and symmetric, but not reflexive.

Solution 1: Take $R = \emptyset \subset (A \times B) \times (A \times B)$. Solution 2: Take $R = \{((a_1, b_1), (a_1, b_1))\}$. This is obviously symmetric (switch (a_1, b_1) with itself), and it is transitive. It is not reflexive because it is missing, say, $((a_2, b_1), (a_2, b_1))$. There are many other solutions that are possible. Note that if $((a_i,b_j),(a_k,b_l))$ is in the relation, then so is $((a_k,b_l),(a_i,b_j))$ by symmetry, and hence $((a_i,b_j),(a_i,b_j))$ and $((a_k,b_l),(a_k,b_l))$ are in the relation as well. In particular, to ensure that it is not reflexive, you need to make sure there is at least one element of $A \times B$ that does not appear as a component of any element of the relation.

- 27. Suppose A is a finite set and R is an equivalence relation on A.
 - (a) Prove that $|A| \leq |R|$. Solution: Since R is reflexive, if $a \in A$ then $(a, a) \in R$. In particular, the map $f: A \to R$ defined by f(a) = (a, a) is well-defined. This is obviously injective, and so $|A| \leq |R|$.
 - (b) If |A| = |R|, what can you conclude about R? Solution: If |A| = |R| then R contains no more elements than those in the image of f from part (a). This implies that $R = \{(a, a) \mid a \in A\}$ is the diagonal equivalence relation.
- 28. Consider the relation $R \subset \mathbb{Z}_4 \times \mathbb{Z}_6$ defined by

$$R = \{(x \bmod 4, 3x \bmod 6) \mid x \in \mathbb{Z}\}.$$

Prove that R is a function from \mathbb{Z}_4 to \mathbb{Z}_6 . Is R a bijective function?

Solution: We need to show two things: (1) For every $a \in \mathbb{Z}_4$ there is some $b \in \mathbb{Z}_6$ such that $(a,b) \in R$; (2) If $(a,b), (a,b') \in R$ then b=b'. The first follows immediately from the definition of R: if $a=[x] \in \mathbb{Z}_4$, and $x \in [x]$ is any integer, then take b to be the mod 6 reduction of x, and so we have $(a,b) \in \mathbb{Z}_4 \times \mathbb{Z}_6$. To prove (2), suppose $(a,b), (a,b') \in R$. Then we have

$$(a, b) = (x \mod 4, 3x \mod 6),$$

$$(a,b') = (y \bmod 4, 3y \bmod 6)$$

for some integers x, y. We obviously have $x \mod 4 = y \mod 4$ and so x = y + 4k for some integer k. This gives 3x = 3y + 12k and so $b = 3x \pmod{6} = 3y \pmod{6} = b'$, as desired.

29. Consider the relation $S \subset \mathbb{Z}_4 \times \mathbb{Z}_6$ defined by

$$S = \{(x \bmod 4, 2x \bmod 6) \mid x \in \mathbb{Z}\}.$$

Prove that S is not a function from \mathbb{Z}_4 to \mathbb{Z}_6 .

3 SS14

Solution: This fails item (2) in the solution to the previous problem (it satisfies item (1)): We have

$$0 \pmod{4} = 4 \pmod{4},$$

but

$$2 \cdot 0 \pmod{6} \neq 2 \cdot 4 \pmod{6}.$$

30. Suppose $f: A \to B$ and $g: X \to Y$ are bijective functions. Define a new function $h: A \times X \to B \times Y$ by h(a, x) = (f(a), g(x)). Prove that h is bijective.

Solution: First we show h is injective. Suppose h(a,x) = h(a',x'). Then f(a) = f(a') and g(x) = g(x'). Since each of these is injective, it follows that a = a' and x = x', which is equivalent to saying (a,x) = (a',x').

To see that h is surjective, let $(b, y) \in B \times Y$. Then since f, g are surjective, there are $a \in A$ and $x \in X$ such that f(a) = b and g(x) = y. It follows that h(a, x) = (b, y).

31. Prove or disprove: Suppose $f: A \to B$ and $g: B \to C$ are functions. Then $g \circ f$ is bijective if and only if f is injective and g is surjective.

Solution: The direction (\Leftarrow) is false. Indeed, consider the case where A=B, and take f to be the identity function (this is obviously injective). Now take g to be any function that is surjective but not injective. Then $g \circ f = g$ is not injective, and so certainly not bijective.

The direction (\Rightarrow) is true. To see this, suppose $g \circ f$ is bijective. If f(a) = f(a'), then $(g \circ f)(a) = (g \circ f)(a')$ and so a = a' since $g \circ f$ is injective. To see surjectivity, let $c \in C$. Then since $g \circ f$ is surjective, it follows that there is some $a \in A$ with $(g \circ f)(a) = c$. Now take b = f(a), and so g(b) = c.

- 32. (X points) Let \mathbb{R}^+ denote the set of positive real numbers and let A and B be denumerable subsets of \mathbb{R}^+ . Define $C = \{x \in \mathbb{R} : -x/2 \in B\}$. Show that $A \cup C$ is denumerable.
- 33. Prove that the interval (0,1) is numerically equivalent to the interval $(0,+\infty)$.

Solution: The function $(0,1) \to (0,\infty)$ defined by sending $x \in (0,1)$ to $\tan(2x/\pi)$ is a bijection.

34. Prove the following statement: A nonempty set S is **countable** if and only if there exists an injective function $g: S \to \mathbb{N}$.

Solution: First assume S is countable. Then S is either finite or there is a bijection $f: \mathbb{N} \to S$. We

leave the case where S is finite to the reader. In the case where there is a bijection f, then the inverse of f is an injection from S to \mathbb{N} . Conversely, if there is an injection $g:S\to\mathbb{N}$, then S has the same cardinality as its image $g(S)\subset\mathbb{N}$. If the image is finite, then S is countable. If the image is infinite, then g(S) is an infinite subset of a countable set and so is countable. In either case S is countable.

35. Consider the set $S = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$. Prove that $\mathbb{R} - S$ is uncountable.

Solution: First observe that the set S is countable. Indeed, the function $F: \mathbb{Z} \times \mathbb{Z} \to S$ defined by $F(a,b) = a + b\sqrt{2}$ is a bijection (the reader should check this). Next, assume that $\mathbb{R} - S$ is countable. Then $\mathbb{R} = (\mathbb{R} - S) \cup S$ would be the union of two countable sets, and so would be countable. However, this is a contradiction since \mathbb{R} is uncountable.

36. (a) Suppose A, B are sets. Prove that if A and B have the same cardinality, then $A \times \mathbb{Z}$ and $B \times \mathbb{Z}$ have the same cardinality.

Solution: Since A, B have the same cardinality, there is some bijection $f: A \to B$. Define a function $F: A \times \mathbb{Z} \to B \times \mathbb{Z}$ by F(a,n) = (f(a),n). Then F is a bijection (the reader should check this), so $A \times \mathbb{Z}$ and $B \times \mathbb{Z}$ have the same cardinality.

(b) Prove that \mathbb{Z}^n has the same cardinality as \mathbb{Z}^{n+1} for all $n \in \mathbb{N}$. Hint: Induct on n, and use part (a) for the inductive step.

Solution: The base case is that \mathbb{Z} has the same cardinality as \mathbb{Z}^2 . This is basically Result 10.6 from the book. For the inductive step, use part (a) with $A = \mathbb{Z}^n$ and $B = \mathbb{Z}^{n+1}$.

- (c) Prove that \mathbb{Z}^n is countable for all $n \in \mathbb{N}$.
- Solution: We know that $\mathbb Z$ is countable. Since the relation of 'countable' is transitive, part (c) follows from part (b).
- 37. Compute the greatest common divisor of 42 adn 13 and then express the greatest common divisor as a linear combination of 42 and 13.

Solution: 42 = 39 + 3 = 3(13) + 3; 13 = 12 + 1 = 4(3) + 1; 3 = 3(1) + 0. Therefore, the gcd is equal to 1. Working backwards, we have that 1 = 13 - 4(3) = 13 - 4(42 - 3(13)) = 13(13) + (-4)42.

38. Let $a, b, c \in \mathbb{Z}$. Prove that if c is a common divisor of a and b, then c divides any linear combination of a and b.

4 SS14

Solution: Suppose c is a common divisor of a and b and let ax + by, where $x, y \in \mathbb{Z}$, be a linear combination of a and b. Then $c \mid a$ and $c \mid b$. Therefore, a = cm and b = cn for some $m, n \in \mathbb{Z}$. It follows that ax + by = cmx + cny = c(mx + ny). Therefore, $c \mid (ax + by)$.

39. Define the term "p is a prime". Then prove that if $a, p \in \mathbb{Z}$, p is prime, and p does not divide a, then $\gcd(a, p) = 1$.

Solution: A number p is prime if p is a positive integer greater than one and whenever p=ab for some positive integers a and b, then a=1 or b=1. Suppose that p is prime and that $a \in \mathbb{Z}$ is not divisible by p. Since p and a are not both zero, there is a greatest common divisor d. If d>1, then $d \mid p$ implies that d=p since the only divisors of p are 1 and p. Since $d \mid a$, this implies that $p \mid a$ which is a contradiction. Therefore, d cannot be greater than 1. Hence, d=1.

40. The greatest common divisor of three integers a, b, c is the largest positive integer which divides all three. We denote this greatest common divisor by gcd(a, b, c). Assume that a and b are not both zero. Prove the following equation:

$$gcd(a, b, c) = gcd(gcd(a, b), c).$$

Solution: Let d be the gcd of a, b, and c. Let e be the gcd of e and b. Let f be the gcd of e and c. We prove that d = f. Since e is a linear combination of e and e, e is a linear combination of e and e, it follows that e divides e. Therefore e is a linear combination of e and e, it follows that e divides e.

On the other hand, $f \mid e$ and $f \mid c$. Since $e \mid a$ and $e \mid b$, $f \mid a$ and $f \mid b$. Thus, f is a common divisor of a, b, and c. Hence, $f \leq d$. Therefore, f = d.

41. By using the formal definition of the limit of the sequence, without assuming any propositions about limits, prove the following:

$$\lim_{n \to \infty} \frac{3n+1}{n-2} = 3.$$

42. By using the formal definition of the limit of the sequence, without assuming any propositions about limits, prove that

$$\lim_{n \to \infty} \frac{(-1)^n 3n + 1}{n - 2}$$

does not exist.

43. Let (a_n) be a sequence with positive terms such that $\lim_{n\to\infty} a_n = 1$. By using the formal definition of the limit of the sequence, prove the following:

$$\lim_{n \to \infty} \frac{3a_n + 1}{2} = 2.$$

44. (a) Use induction to prove

$$\frac{1}{2 \cdot 4} + \frac{1}{4 \cdot 6} + \dots + \frac{1}{2n(2n+2)} = \frac{n}{4(n+1)}$$

for all $n \in \mathbb{N}$.

(b) Prove
$$\sum_{k=1}^{\infty} \frac{1}{2k(2k+2)} = \frac{1}{4}$$
.