Directions:

- Include a cover page.
- Do not hand in scratch work.¹ The final version of your solution to each problem should be collocated and stapled.
- Always label every plot (title, x-label, y-label, and legend).
- Use the subplot command from MATLAB (or matplotlib) when comparing 2 or more plots to make comparison easier and to save paper.
- 1. Compute the first 5 terms in the Taylor series (constant, linear, quadratic, cubic, and quartic pieces) for the following functions about the given point:
 - (a) f(x) = sin(x), about the point a = π/4.
 (b) f(x) = x/(1+x), about the point a = 0. *Hint:* you may want to start with 1/(1+x).
 (c) f(x) = e^{cos(x)}, about the point a = 0.
 (d) f(x) = 1 x 2x² + x³, about the point a = 1.
- 2. Using the results from Problem 1(c), make a single MATLAB (or matplotlib) plot which contains all of the following:
 - (a) A graph of $f(x) = e^{\cos(x)}$ versus x for $x \in (-3, 3)$.
 - (b) A graph of $P_2(x)$.
 - (c) A graph of $P_4(x)$.
 - (d) A title, x-axis label, y-axis label, and a legend.
- 3. Determine which one of the following sequences converges to 1 faster (clearly explain your reasoning):

$$\lim_{x \to 0} \frac{\sin(x^2)}{x^2}$$
 and $\lim_{x \to 0} \frac{\sin^2(x)}{x^2}$.

4. Compute each of the following limits and determine the corresponding rate of convergence:

(a)
$$\lim_{x \to 0} \frac{e^{x} - 1}{x}$$

(b)
$$\lim_{x \to 0} \frac{\sin(x)}{x}$$

(c)
$$\lim_{x \to 0} \frac{\cos(x) - 1 + x^2/2 - x^4/24}{x^6}$$

¹Yes, doing math will require a lot of scratch work! You will rarely be able to correctly answer each question on your first try. For each problem, figure out what the solution is, and then write-up a *final draft* that you hand in.

- 5. Consider the function $f(x) = e^x$.
 - (a) Derive the n^{th} Taylor polynomial $P_n(x)$ as well as the remainder term $R_n(x)$ for the function f(x), expanded about the point x = 0.
 - (b) Using the remainder term from part (a), determine the value of n needed to guarantee that $|P_n(-1) f(-1)| < 10^{-5}$.
 - (c) Compute the actual error, $err(-1) = |P_n(-1) f(-1)|$.
- 6. Suppose theory indicates that a sequence $\{p_n\}$ converges to p with order 1.5. Explain how you would numerically verify this order of convergence. In particular, demonstrate your method by constructing a table: select an asymptotic error constant $\lambda = 0.5$, and an initial approximation that satisfies $|e_1| = 1$.
- 7. Consider the recursive sequence $\{x_n\}$ defined by

$$x_{n+1} = \frac{x_n^3 + 3x_n a}{3x_n^2 + a}.$$

- (a) Suppose $x = \lim_{n \to \infty} x_n$ exists. Show that x = 0 or $x = \pm \sqrt{a}$. *Hint:* If this limit exists, then $x = \lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1}$.
- (b) Show that the convergence of this sequence toward \sqrt{a} is third order.
- (c) What is the asymptotic error constant?
- (d) Numerically verify your results by constructing a table similar to the proposed table in the previous problem. For the numerics only, use a = 1 and a starting value of $x_0 = 131$. You will only get in a few iterations before hitting machine precision.
- 8. Consider the functions f(x) = 1/(1-x) and g(x) = 1/(1+x).
 - (a) Obtain the infinite Taylor series representation of f(x) about the point x = 0.
 - (b) Obtain the infinite Taylor series representation of g(x) about the point x = 0. *Hint:* you may reuse what you computed in Part (a).
 - (c) Obtain the infinite Taylor series representation for $\ln(1+x)$ by identifying this function as

$$\ln(1+x) = \int_0^x \frac{1}{1+t} \, dt$$