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1 A brief review of Calculus

Recall from a first semester calculus course:

Definition 1 (Derivative). The derivative of a function at a point a is defined

by
F(a) = lim fla) — fla)
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Note: an equivalent definition is given by

fla+h) - f(a)

f'(a) = lim 5 : (2)
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In a first semester class, you see that f’ is a measure of the rate of change
of a function, and provides the slope of the tangent line to the curve at the
point (a, f(a)). Today, we’ll formalize this with an approximation method,
and in particular, we’ll construct devices that tell us precicely how well our
approximation performs. In particular, we’ll discuss how Taylor series can help
improve the accuracy.

1.1 Linear approximation

A first pass at approximating a function comes directly from the definition of
the derivative. If we take Definition 1 and take x # a, but close, we can argue

that
o)~ =IO ®)
which implies
f(@) = f(a) + f'(a)(z —a). (4)

Equation (4) precicely defines an algorithm to approximate a function:

1. Input: A point a, the value of the function at that point, f(a) and the
function’s derivative at that point, f'(a).

2. Ouptut: The coefficients a; and ag for an equation that approzimates this
function: y = a1(z — a) + ag.



Remark 1. A natural question to ask is the following: if we know what f is,
then why are we creating something that carries error with it?

Answer: In numerical analysis, one usually works with finitely many points,
and so in practice, you don’t have f(x) everywhere. Much of this course will be
devoted to answering two questions:

1. Given a discrete set of data, how do we form a continuous approximation
to a continuous problem?

2. How do we analyze the error incurred with this approximation, and can
we formalize how well our approximations work? Can we prove that our
method of approximation converges to the exact solution?

continuous (e.g. ODE, PDE) < discrete (e.g. computer arrays).

1.2 Some big theorems

The first big theorem you see in a first semester Calculus course is the following:

Theorem 1 (Mean Value Theorem). If f is a differentiable function on (a,x),
and continuous on [a, x|, then there exists (at least) one number ¢ € (a,x) such
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Draw a picture proof of this theorem. Clearly indicate what the endpoints
are, and in the picture, show two possible choices for what ¢ can be.
This is precicely the tool that is needed to make our approximation in equa-
tion (4) rigorous. The MVT (5) is ezact but we don’t know what ¢ is. However,
we can use it anyway as a theoretical tool to show exactly how close (4) approx-

imates the function.

1.3 A rigorous analysis of linear approximation

If we rearrange the result from the MVT, we can identify f(x) by:
fex(z) = f(a) + f'(c)(x — a), (6)

where ¢ is some number between a and x. Comparing this to the linear approx-
imation given by

fapprox () ~ f(a) + f'(a)(z — a), (7)
we see that the only difference is given by the function’s derivative. Taking the
absolute value of the difference gives us a handle on the error:

er1(w) = |fex(0) = Fapprox(@)| = |F (O @)~ f(@)e—a)]  (3)
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One final observation comes from applying the MVT again' , but this time to
f’, and not f. That is, we know that
/ gt
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1Here, we need to assume that f’ is differentiable and continuous on the closed interval.



for some c* between a and c. If we insert this into our above estimate, we have,
err(z) = = |z — alle — a| [f"(c")] < (z — a)*M, (11)

where M is an upper bound that satisfies f”/(x) < M for all  near a. Note that
as ¥ — a, the error goes to zero, which is exactly what we would like to see!

2 Taylor’s theorem

The material presented in the previous section is a special case of a Taylor
polynomial, P;:
Py(x) = f(a) + f'(a)(z — a). (12)

Equation (12) defines an exact decomposition of f into:
f(x) = Pi(z) + Ri(z), (13)

where |R1(7)| < (z — a)?M defines the remainder (error).

We know from our error estimates that one way to clamp down on the error
is to make z closer to a, but what if we can’t do that? On the other hand, what
if we have more information about f, such as f”(a), f"(a),...?

Theorem 2 (Taylor’s Theorem). Suppose f is continuous on [a,b], has n con-
tinuous derivatives on (a,b) and f"+V) exists on [a,b]. Let xo € [a,b]. For
every x € [a,b], there exists a number {(x) between x and xo such that

f(s) = Pu(z) + Ru(), (14)

where the n'"-order Taylor polynomial is given by,

(k)
Pa) = 3 T 0, (15)
k=0 ’
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Remark 2. The only difference between the Remainder, R, (x), and the next
term in the Taylor series is where f("T1) gets evaluated.

2.1 An extensive example

Consider the function f(z) = /z. We’'ll construct the second-order Taylor
polynomial P5 of f centered at zp = 16. This will decompose f into f(z) =
Py(z) + Ra(x).

n| | (@ =16) | f™ (w0 = 16)/n! |
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A quadratic approximation to the function is then given by

Py(x) = f(xo) + f'(z0)(z — x0) + " (x0)(x — 20)?/2! (17)
1 1 ,

with a remainder given by

1

RQ(IE) = W

(z —16)>. (19)

We can use this polynomial to approximate stuff nearby. For example,

11
VIT = J(17) =~ Py(17) = 4 4 ¢ — o1 = 4.123046875.

The error incurred by using this for our approximation is bounded by

A

f 1
5 @ z0)”

< 16165/2

|R2(17)| = =1/16384 ~ 6.10 x 10~°.

(20)
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2.2 Taylor polynomial of a polynomial

Consider the function f(r) = 5—2z+ 322+ 2. Here, we’ll construct the Taylor
polynomial for this function centered at xg = 4.

2.3 Other examples
If you have time, do a table for a couple of other Taylor series:

e’, sin(x), cos(z), 1/(1—x). (21)

3 Multivariable Taylor series

If you have time, you may want to write down the first and second Taylor
polynomial in the multivariable case.



