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A sequence is a function, a : N → R, whose domain is a discrete
set of points. We normally denote the sequence with subscripts, using
a(n) = an in place of a(n). Other means of writing a sequence including
using “set” notation:

{an}∞n=0 = {a0, a1, a2, . . . } ,(1)

which should not be confused with sets, because while order matters
for a sequence, order certainly does not matter for a set. We rarely
concern ourselves with the starting index. That is, {a6, a7, . . . } is also
a sequence. That sequence has a starting index of 6 instead of 1.

The big theorem which will get a lot of mileage is the following:

Theorem 1 (Finite Mountain Climber). If {an} is a bounded, mono-
tonic sequence, then limn→∞ an exists.

Picture a mountain climber with perfect grip. She never falls, nor
gets tired, which means the sequence is non-decreasing : a0 ≤ a1 ≤
a2 ≤ . . . . If she’s climbing a mountain with finite height (i.e. an ≤M ,
for all n ), then she must eventually settle down at some point on the
mountain. It might not be the peak, perhaps she found an awesome
lake 1K feet from the top to hang out at, but she will settled down at
some altitude.

A series is formed by taking a sequence, and adding up every term
in the sequence. Formally, this is the single number, given by

∞∑
n=0

an.(2)

Again, we rarely care about the lower index of summation, because
we’re more interested in whether or not the infinite sum converges. If
we change the lower index on a convergent series, then the new series
is identical to the old one, but off by a constant. This means

∑∞
n=6 an

is also considered a series.
An infinite sum is potentially ambiguous and therefore we need to

formalize what we mean by adding up infinitely many numbers. In
order to determine if the sequence converges, (i.e. gives us an actual

1



2 DAVID SEAL

number), we form a second sequence, called the sequence of partial
sums, which is defined as:

Sn =
n∑

k=0

ak.(3)

Each Sn is well defined, because its a sum of finitely many terms,
and therefore, the sequence {Sn}∞n=0 is well defined. We say that the
series defined in equation (2) converges if and only is the sequence
limn→∞ Sn converges. Remember, there are exactly two sequences to
consider when looking at a series.

(1) Given a sequence {an}∞n=0, we can form:
(2) The sequence of partial sums: {Sn}∞n=0, where each term in this

sequence is defined by

Sn := a0 + a1 + · · · an =
n∑

k=0

ak.

(3) If the sequence of partial sums, {Sn}∞n=0 converges, then we say
that the infinite series

∑
an converges.

The primary question we will attempt to answer throughout the
bulk of Chapter 10 is the following: given a sequence {an}, under what
conditions does the series

∑
an converge?

The first tool to throw in your toolbox is the following:

Theorem 2 (nth Term (or No Way!) Test). If lim an 6= 0, then the
series

∑
an diverges.

As an application of the nth-term test, consider the following series:∑∞
n=1 ln

(
n

2n+1

)
. Because lim ln

(
n

2n+1

)
= ln

(
lim n

2n+1

)
= ln

(
1
2

)
6= 0,

the series diverges by the nth-term test. Roughly, the statement of this
theorem means is that towards the tail end of the series, we are con-
sistently adding in a “large”, non-zero amount, infinitely many times.

A very special series that we’ll see plenty of is the geometric series,
which converges if and only if the common ratio r is less than 1 in
absolute value:

∞∑
n=0

rn = 1 + r + r2 + r3 + · · · = 1

1− r
.(4)

Your textbook may have a slightly different version of this written
down, but you can always force every geometric series to look like this
by first factoring out the first term in the series.


