
NOTES ON REVIEWING FOR FINAL EXAM

DAVID SEAL

6. Applications of Definite Integrals

There are a number of ways to generate a 3D object from a 2D
domain. Usually, you’re given some formula, or access to some formula
A(x) which represents the area of a cross-sectional slice. In general, we
define the volume of an object to be

V =

∫ b

a

A(x) dx.(1)

An example of a generic problem would be the following:

Example 1. Suppose the base of an object is the region x2 + y2 ≤ 1.
Vertical slices of the object produce isocoles right triangles with one leg
on the base of the object. Compute the volume of the object.

A special class of problems that we looked at are when the cross-
sectional areas look like discs.

In this case, the Disc method has a cross-sectional area given by
A(s) = πr2, which gives,

V =

∫
πr2 ds.(2)

For vertical slices, s = x, and for horizontal slices s = y. Of course,
limits of integration also need to be in place.

Two applications of the disc method produces the washer method :

V = π

∫
r2out − r2in ds.(3)

Example 2. Compute the volume of the object generated by revolving
the region bounded by x =

√
5y2, x = 0, y = −1, y = 1 about the y-axis.

(See 6.1.27).
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Arclength should look familiar from the recent material. When y =
y(x), the formula looks like,

L =

∫ d

c

√(
dy

dx

)2

+ 1 dx,(4)

and when x = x(y), the formula swaps y with x:

L =

∫ b

a

√(
dx

dy

)2

+ 1 dy,(5)

See 6.3, problems {1, 2, . . . , 10}.
For constant force and constant distance, we define work as

W = F · d.(6)

In general, we define it as

W =

∫ b

a

F (x) dx.(7)

A few problemg to be aware of include variations of Hooke’s law, work
required to pull a rope up the side of a building, or work required to
pump out the contents of a container.

See 6.5 problems {2, 7, 9, 13, 17} and other problems from that sec-
tion.

7. Chapter 7

Know the horizontal line test, the definition of a 1− 1 function and
how to find an inverse to a function graphically or algebraically if it
exists. The biggest result from 7.1 is the Derivative Rule for Inverse
Functions :

Theorem 1. If f has an open interval I for its domain, and f ′(x)
exists on I and is never zero, then

(1) the inverse function, f−1 exists, and
(2) the derivative of f−1 is given by(

f−1
) ′(b) =

1

f ′ (f−1(b))
.(8)

For practice, see problems {25, . . . , 34} from 7.1.
Know how we define ln(x), and more importantly, what its derivative

is. Know the algebraic properties of ln(x): product rule, quotient rule,
recipricol rule and power rule. The product rule is

ln(AB) = ln(A) + ln(B).
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Logarithmic differentiation can be very useful in some cases to avoid
excessive use of quotient/chain rule.

Example 3. Compute dy
dx

, where

y =
x
√
x2 + 1

(x+ 1)3/2
.

We then defined ex as the inverse function of ln(x). It has a deriva-
tive, and its own set of multiplicative, division and recipricol rules.

Remember that we defined

ax = ea ln(x),(9)

and therefore d
dx
ax = ax ln(a). After defining a, we get the change of

base formula for ln:

loga(x) =
ln(x)

ln(a)
.(10)

We looked at how to solve a class of differential equations, that are
called separable. Look at any of {9, 10, . . . , 22} from 7.4. The most
important models we looked at were

(1) Population Growth:

dy

dx
= ky, k > 0.

(2) Radioactive Decay:

dy

dx
= ky, k > 0

(3) Newton’s Law of Cooling:

dy

dt
= −k (y − ys) .

where ys is the surrounding temperature, and k > 0 is a con-
stant.

Know how to solve all of these. See 7.4 problems {25, 29, 38, 39}.
In section 7.5, we learned LeHópital’s rule. Under appropriate con-

ditions, it says that

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,(11)

provided both f, g → 0 as x → a. Practice many as many problems
from 7.5 as necessary {7, . . . , 50}, any. The second class you’ll run into
is variations of the rule such as the following:
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Example 4. Compute the following limit:

lim
x→0+

xx.

Here, you need to first take logarithms first. For more practice on
this class of problem, see 7.5 {51, . . . , 66}, any.

Know the following three inverse trig functions:

(1) sin−1(x),
(2) tan−1(x),
(3) tan−1(x).

Know what their graphs look like, but most importantly, what their
derivatives are. In order to compute the derivative of y = sin−1(x), you
can first apply sin to both sides:

sin(y) = x,

then differentiate to get:

cos(y)y′ = 1, =⇒ y′ = sec(x) =
1√

1− x2
.

Look up some of the hyperbolic functions. I think the easiest way to
always deal with these is to simply convert them to exponentials, so
memorize their integrals if you must, otherwise know how to convert
them!

8. Chapter 8

Look up table 8.1. You most likely will not need to have all of these
memorized, but at a minimum, I would memorize 1− 9, 12 − 15, and
18− 20.

Theorem 2. Integration by parts is best memorize by∫
u dv = uv −

∫
v du.(12)

There are three very common problems that IBP can be used to
solve:

(1) polynomial times sin, cosine, or exponential.
(2) sin, cosine, exponential times sin, cosine or exponential.
(3) integral of an inverse function where you know the derivative.

For an example of (1), consider

Example 5. Compute∫
(2x2 + x− 5) sin(2x) dx.
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Tabular integration knocks the socks off these problems.
For an example of (2), consider

Example 6. Compute ∫
e2x sin(x) dx.

For an example of (3), consider

Example 7. Compute ∫
ln(x), dx.

or rather

Example 8. Compute ∫
tan−1(x), dx.

Certain tri functions can be integrated with an appropriate use of
trig substitutions. Two of your best friends are

sin2(x) =
1

2
(1− cos(2x)) ,(13)

cos2(x) =
1

2
(1 + cos(2x)) ,(14)

and pythagorian theorem,

sin2(x) + cos2(x) = 1.(15)

Know how to deal with stuff of the form:
∫

cosm(x) sinn(x) dx and
variations of that.

Trig subs can also be useful. The most common subs are given by

(1) If you see something with a2 − x2 use x = a sin(θ).
(2) If you see something with a2 + x2 use x = a tan(θ).
(3) If you see something with x2 − a2 use x = a sec(θ).

The whole point is stuff like
√
a2 − x2 will collapse into a perfect square

with said substitution.
See any problems {15, . . . 48} from 8.4 for practice.
Another class of problems that we can integrate, which don’t appear

in table 8.1, are rational functions. In principle, we can integrate every
rational function after doing a PFD (partial fraction decomposition)
on it. Warning: do not attempt to do a PFD on a function that’s not
a rational function, such as

f(x) =
x√
x2 + 1

.
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The following are all rational functions:

1

x2 + 2x+ 1
,

x2 + 1

x(x+ 2)
,

3x+ 1

x3 + 5x+ 2
, . . .

See problems from 8.4.
Know when you’re dealing with an improper integral, and how to

deal with them. Two common things can happen: either the function
has an asymptote somewhere within the limits of integration, or one of
the limits (or both) are infinite. The following are two examples,

Example 9. Compute the following integral,∫ ∞
−∞

e−|x| dx

Example 10. Compute the following integral,∫ 5

0

x

x2 − 2x+ 1
dx

We also have the continuous version of the Limit Comparison Test,
as well as the Direct Comparison Test. See theorems 2 and 3 from §8.7.

10. Chapter 10

A sequence is a function, a : N → R, whose domain is a discrete
set of points. We normally denote the sequence with subscripts, using
a(n) = an in place of a(n). Other means of writing a sequence including
using “set” notation:

{an}∞n=0 = {a0, a1, a2, . . . } ,(16)

which should not be confused with sets, because while order matters
for a sequence, order certainly does not matter for a set. We rarely
concern ourselves with the starting index. That is, {a6, a7, . . . } is also
a sequence. That sequence has a starting index of 6 instead of 1.

A series is formed by taking a sequence, and adding up every term
in the sequence. Formally, this is the single number, given by

∞∑
n=0

an.(17)

Again, we rarely care about the lower index of summation, because
we’re more interested in whether or not the infinite sum converges. If
we change the lower index on a convergent series, then the new series
is identical to the old one, but off by a constant. This means

∑∞
n=6 an

is also considered a series.
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An infinite sum is potentially ambiguous and therefore we need to
formalize what we mean by adding up infinitely many numbers. In
order to determine if the sequence converges, (i.e. gives us an actual
number), we form a second sequence, called the sequence of partial
sums, which is defined as:

Sn =
n∑
k=0

ak.(18)

Each Sn is well defined, because its a sum of finitely many terms,
and therefore, the sequence {Sn}∞n=0 is well defined. We say that the
series defined in equation (17) converges if and only is the sequence
limn→∞ Sn converges. Remember, there are exactly two sequences to
consider when looking at a series.

(1) Given a sequence {an}∞n=0, we can form:
(2) The sequence of partial sums: {Sn}∞n=0, where each term in this

sequence is defined by

Sn := a0 + a1 + · · · an =
n∑
k=0

ak.

(3) If the sequence of partial sums, {Sn}∞n=0 converges, then we say
that the infinite series

∑
an converges.

The primary question we will attempt to answer throughout the
bulk of Chapter 10 is the following: given a sequence {an}, under what
conditions does the series

∑
an converge?

A very special series that we’ll see plenty of is the geometric series,
which converges if and only if the common ratio r is less than 1 in
absolute value:

∞∑
n=0

rn = 1 + r + r2 + r3 + · · · = 1

1− r
, |r| < 1.(19)

Every other series requires a test to be performed to see if it con-
verges. Here is a list of most of the tests we encountered:

Theorem 3 (nth Term (or No Way!) Test). If lim an 6= 0, then the
series

∑
an diverges.

Example 11. Determine whether or not the following series converges,

∞∑
n=0

cos(πn)
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Example 12. Determine whether or not the following series converges,
∞∑
n=1

ln

(
n

2n+ 1

)
Theorem 4 (Integral Test).

Example 13. Determine whether or not the following series converges,
∞∑
n=1

1

n (ln(n))2

Theorem 5 (Direct Comparison Test).

Example 14. Determine whether or not the following series converges,
∞∑
n=0

n

n2 + 1

Theorem 6 (Limit Comparison Test).

Example 15. Determine whether or not the following series converges,
∞∑
n=0

n1/3

√
n2 + 1

Theorem 7 (Ratio Test).

You should think about applying the Ratio Test on essentially every
problem you see that has a factorial in it.

For problems with negative terms, first check if it fails the nth-term
test, if it passes it (i.e. the test is inconclusive because lim an = 0, then
check to see if it converges absolutely. If it doesn’t converge absolutely,
check to see if you can apply the

Theorem 8 (Alternating Series Test (Leibniz Test)). Suppose you have
a sequence of the form

∑
(−1)nan, where each an ≥ 0. If the following

occur,

(1) The sequence {an} is non-increasing, i.e. an+1 ≤ an, and
(2) lim an = 0,

then the series converges (at least conditionally).

To determine absolute convergence, you need to look at∑
|(−1)nan| =

∑
an.

Know how to add, subtract, multiply differentiate and integrate
power series. Know the definitions of Taylor series, Taylor polynomials
and how to use them.
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Theorem 9 (Error Estimation Theorem). Suppose f(x) is sufficiently
smooth, and that

Pn(x) = a0 + a1(x− a) + a2(x− a)2 + · · · an(x− a)n

is the nth-degree Taylor polynomial, where ak = f (k)(a)
k!

. Then the error,
Rn(x) = f(x)− Pn(x) satisfies

Rn(x) =
f (n+1)(c)

(n+ 1)!
cn+1,

where c is some number between x and a. Furthermore, if
∣∣f (n+1)(t)

∣∣ ≤
M for all t between x and a, then

|Rn(x)| ≤ M

(n+ 1)!
|x− a|n+1 .

11. Chapter 11

Material from this chapter should be somewhat fresh.
Paramterizations of curves, plotting and graphing curves in Polar

coordinates, changing from Cartesian to Polar and back again. Area
in polar coordinates:

A =
1

2

∫ β

α

r(θ)2 dθ.(20)


