
CHAPTER 10 NOTES

DAVID SEAL

1. Two Point Boundary Value Problems

All of the problems listed in 14−20 ask you to find eigenfunctions for the problem

(1) y′′ + λy = 0

with some prescribed data on the boundary. To solve this, you always have to deal
with three cases.

Case I: λ = −µ2 > 0. The problem is then

y′′ − µ2y = 0

whose characteristic equation is r2 − µ2 = 0 with roots r = ±µ. The solution is
then

y = a1e
µx + a2e

µx.

For the purposes of evaluating this function at two different points, it’s convenient
to express this in terms of hyperbolic sines and cosines. The definitions of these
functions are

cosh(x) :=
ex + e−x

2
, sinh(x) :=

ex − e−x

2
.

from which we can solve for the ex and e−x functions:

ex = cosh(x) + sinh(x), e−x = cosh(x) − sinh(x).

If you substitute this into our equation for y(x), we can exchange the constants a1

and a2 for new constants c1 and c2 and write the solution as

y(x) = c1 cosh(x) + c2 sinh(x).

There are a couple of very useful facts about the hyperbolic sine and cosine
functions. 1.) Since ex, e−x are always positive, we know cosh(x) 6= 0 for any x.
2.) Since d

dx
sinh(x) = cosh(x) > 0, we know that sinh(x) is an increasing function.

Furthermore, by inspection we know that sinh(0) = 0. Therefore the only zero of
sinh is at x = 0.

Case II: λ = 0. This is the easy case. The differential equation is

y′′ = 0

whose solution is (after integrating twice) y = c1 + c2x. You can also get this
from looking at the characteristic equation: r2 = 0 whose roots are r = 0 with
multiplicity two. The solution is apparently y = c1e

0x + c2xe0x.
Case III: λ = µ2 > 0 The differential equation is

y′′ + µ2y = 0
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whose characteristic equation is r = ±µi. Hence the solution is

y = c1 cos(µx) + c2 sin(µx).

Sine and cosine have plenty of zeros to work with. This is usually the ‘good’ case.
The three cases I worked out for you are given in formulas (21), (26) and (28)

in your textbook.
Problem #14 Find the eigenvalues and eigenfunctions of the given boundary

value problem. Assume that all the eigenvalues are real.

y′′ + λy = 0, y(0) = y′(π) = 0.

We need to break this into cases.
Case I: λ = −µ2 < 0. The solution to this is y(x) = c1 cosh(x) + c2 sinh(x).

Plugging in y(0) = 0, we see that c1 = 0. Hence y = c2 sinh(µx) and y′ =
c2µ cosh(µx) with y′(π) = c2µ cosh(µπ) = 0. Since µ 6= 0 and cosh(µπ) 6= 0 (cosh
has NO zeros!) we must force c2 = 0. Hence y ≡ 0 is the only solution out of this
case.

Case II: λ = 0 with solution y = c1 + c2x. Plugging in 0 and π we see that
c1 = c2 = 0. We’re not making much progress!

Case III: λ = µ2 > 0 with solution c1 cos(µx) + c2 sin(µx). Plugging in x = 0 we
see that c1 = 0 hence y = c2 sin(µx). Differentiating this we have y′ = c2µ cos(µx).
Plugging in π we have y′(π) = 0 = c2µ cos(µπ). Now we get non-trivial solutions!
We must have µπ be a zero of cosine which means µπ = π/2, 3π/2, 5π/2, . . . and
hence µ = (odd integer)/2 = (2n−1)/2 for some n ≥ 1. Plugging this back into the
original y, we have eigenfunction solutions yn(x) = sin((2n−1)/2x) with associated
eigenvalue λn = µ2

n = ((2n − 1)/2)2.

2. Fourier Series

The functions sin(nπx/L) and cos(nπx/L) form an orthogonal set on the interval
[−L, L]. That is,

∫ L

−L

cos
(mπx

L

)

cos
(nπx

L

)

dx =

{

0, m 6= n
L, m = n.

∫ L

−L

cos
(mπx

L

)

sin
(nπx

L

)

dx =

{

0, m 6= n
L, m = n.

∫ L

−L

sin
(mπx

L

)

sin
(nπx

L

)

dx =

{

0, m 6= n
L, m = n.

This fact allows us to solve for the Fourier cofficients of a function. If we can express
a function

(2) f(x) =
a0

2
+

∞
∑

n=1

an cos
(nπx

L

)

+ bn sin
(nπx

L

)

,
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then the coefficients are given by

a0 =
1

L

∫ L

−L

f(x) dx;(3)

an =
1

L

∫ L

−L

f(x) cos
(nπx

L

)

dx, n ≥ 1;(4)

bn =
1

L

∫ L

−L

f(x) sin
(nπx

L

)

dx, n ≥ 1.(5)

One can derive these by multiplying equation (2) by cos(mπx/L) then integrating
over the full period. Know these formulas.

3. The Fourier Convergence Theorem

The previous section stated that if we want to express a known function f(x) as
an infinite sum of sines and cosines, then the coefficients must be given by equations
(3) - (5). The precise mathematical statement for when you can do this is given by
theorem 10.3.1.

If f(x) is periodic of period 2L and piecewise C1 (that is f has a derivative
that’s continuous everywhere except at finitely many points) then f has a fourier
series given by (2) and at points where f is discontinuous the series converges to
the average left and right hand side values.

As an example, find the fourier series for

f(x) =

{

x3, 0 ≤ x < 1,
0, −1 ≤ x < 0,

where f is 2-periodic.
Since the period of f is two, then L = 2/2 = 1. Hence the constant term is given

by

a0 =

∫ 1

−1

f(x) dx =

∫ 1

0

f(x) dx =

∫ 1

0

x3 dx =
x4

4

∣

∣

∣

∣

1

0

=
1

4
.

The cosine terms are given by

an =

∫ 1

−1

f(x) cos(nπx) dx =

∫ 1

0

f(x) cos(nπx) dx =

∫ 1

0

x3 cos(nπx) dx

and the sine terms are given by

bn =

∫ 1

−1

f(x) sin(nπx) dx =

∫ 1

0

f(x) sin(nπx) dx =

∫ 1

0

x3 sin(nπx) dx

You can compute these integrals using tabular integration.

4. Even and Odd Functions

An even function is a function with the property that f(−x) = f(x) whenever
x is in the domain of f . An odd function is a function with the property that
f(−x) = −f(x) whenever x is in the domain of f . Note that is only makes sense
to talk about whether or not a function is even or odd if the functions domain is
symmetric about the origin. For example,

f(x) = x3, −∞ < x < ∞
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is an odd function but
f(x) = x3, −1 < x < ∞

is not an odd function. Because f(10) is defined, but f(−10) is not defined. The
fourier coefficients for even/odd functions only include half the terms because of
properties of integration.

If f(x) is an odd function, then

a0 =
1

L

∫ L

−L

f(x) dx = 0;

an =
1

L

∫ L

−L

f(x) cos
(nπx

L

)

dx = 0, n ≥ 1;

bn =
1

L

∫ L

−L

f(x) sin
(nπx

L

)

dx =
2

L

∫ L

0

f(x) sin
(nπx

L

)

dx, n ≥ 1.

These are true since f and f(x) cos
(

nπx
L

)

are both odd functions. We can double
the value of the integral and integrate over only half the interval for the third
integral because f(x) sin

(

nπx
L

)

is an even function. Hence for odd functions, we
can express them as

f(x) =

∞
∑

n=1

bn sin
(nπx

L

)

with

(6) bn =
2

L

∫ L

0

f(x) sin
(nπx

L

)

dx, n ≥ 1.

This result comes directly from equations (3) - (5) and a simple property about
integrals.

Likewise, if f(x) is an even function, then

f(x) =
a0

2

∞
∑

n=1

an cos
(nπx

L

)

with

a0 =
2

L

∫ L

0

f(x) dx(7)

an =
2

L

∫ L

0

f(x) cos
(nπx

L

)

dx, n ≥ 1.

Note that both of these integrals only depend on the value of f(x) on the interval
[0, L].

4.1. Extending a Function - Sine and Cosine Series. Suppose we have a
function f(x) defined on an interval [0, L] and we seek some representation of this
function using sines and cosines. All of our formulas for the Fourier series depend
of a function that’s defined everywhere and is 2L-periodic. In order to do this
we need to extend f(x) to the full line in such a way that it’s 2L-periodic. For
starters we need to extend f to (−L, L] and once we do that, we can declare f to
be 2L-periodic and the use the formulas (3) - (5) to compute the Fourier series for
f(x).

There are infinitely many ways we can extend the function to the full interval,
but at least two of these are incredibly useful. If we choose to extend f so that it’s
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an even function, then the Fourier series will only have cosine terms and likewise,
if we choose to extend f so that it’s an odd function, then the Fourier series will
only have sine terms. What’s remarkable is the fact that doing this, we get two
different representations for the function on [0, L] that look completely different but
the infinite sum still adds to the same value! I.e. we have

a0

2
+

∞
∑

n=1

an cos
(nπx

L

)

=
∞
∑

n=1

bn sin
(nπx

L

)

, x ∈ (0, L)

and

a0

2
+

∞
∑

n=1

an cos
(nπx

L

)

= −

∞
∑

n=1

bn sin
(nπx

L

)

, x ∈ (−L, 0)

if we choose to set the an’s coming from the even extension of f and the bn’s coming
from the odd extension of f given by (6) and (7)

5. Separation of Variables; Heat Conduction in a Rod

Please read pages 612-616 from your textbook.
The important equations are given by (17) which is

un(x, t) = e−(nπ

L )
2

α2t sin
(nπ

L
x
)

is a solution to

ut = α2uxx

u(0, t) = u(L, t) = 0 t > 0.

Thus the ’general’ solution is given by linear combinations of these solutions (be-
cause the problem is linear) which is

(8) u(x, t) =

∞
∑

n=1

cne−(nπ

L )
2

α2t sin
(nπ

L
x
)

,

for some unknown constants cn. (This is equation (19) in your textbook). In order
to figure out what the constants of integration (cn’s) are, we need to know an initial
temperature distribution on the rod given by

u(x, 0) = f(x) x ∈ [0, L]

However, plugging in t = 0 into equation (8) gives us

u(x, 0) = f(x)

∞
∑

n=1

cn sin
(nπ

L
x
)

.

This is precisely the odd Fourier series for f(x)!! Hence is we set

cn =
2

L

∫ L

0

f(x) sin
(nπx

L

)

dx, n ≥ 1,

then this solves the full problem.
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6. Other Heat Conduction Problems

7. The Wave Equation: Vibrations of an Elastic String

The wave equation is given by

utt = a2uxx 0 < x < L, t > 0(9)

u(0, t) = u(L, t) = 0, t > 0(10)

u(x, 0) = f(x), 0 < x < L(11)

ut(x, 0) = g(x), 0 < x < L,(12)

where u(x, t) is the displacement of the string from equilibrium at a given point x
and time t > 0. Equation (10) means that the endpoints of the string are fixed.
Equation (11) is an initial displacement given to the string and equation (12) is
an initial velocity given to the string. We actually split this problem up into two
separate problems:

utt = a2uxx 0 < x < L, t > 0(13)

u(0, t) = u(L, t) = 0, t > 0

u(x, 0) = f(x), 0 < x < L

ut(x, 0) = 0, 0 < x < L

and

utt = a2uxx 0 < x < L, t > 0(14)

u(0, t) = u(L, t) = 0, t > 0

u(x, 0) = 0, 0, < x < L

ut(x, 0) = g(x), 0, < x < L.

Since if we can find a solution u1 that satisfies (13) and a solution u2 that satisfies
(14), then u = u1 + u2 satisfies equations (9) - (12).

If we use separation of variables u(x, t) = X(x)T (t) on equation (9), we end up
with

XT ′′ = a2X ′′T

and after dividing by a2XT , we get

T ′′

a2T
=

X ′′

X
≡ −const.

This gives us two ODES:

T ′′ + a2 · const · T = 0

X ′′ + const · X = 0

whose solutions depend on the sign of the constant. If use the fact that u(0, t) =
u(L, t) = 0, we must have X(0) = X(L) = 0 and so we must force this constant to
be a positive constant. Hence the ODEs are actually

T ′′ + a2λ2 · T = 0,

X ′′ + λ2X = 0,

whose solutions are

T (t) = c1 cos (λat) + c2 sin (λat)

X(x) = c3 cos (λx) + c3 sin (λx)
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Again, since X(0) = X(L) = 0 we need c3 = 0 and λL to be a zero of sin. Hence
λL = nπ, or written another way, λ = λn = nπ

L
. The spatial part is given by

(15) X(x) = sin (λx) .

Now we can solve for T (t). This gives

(16) T (t) = c1 cos
(nπ

L
at

)

+ c2 sin
(nπ

L
at

)

.

For problem (13), we need ut(x, 0) = T ′(0)X(0) = 0, and hence we should force
c2 = 0. This gives a solution,

un(x, t) = cos
(nπ

L
at

)

sin
(nπ

L
x
)

from which we can take linear combinations to give a solution

u(x, t) =

∞
∑

n=1

cn cos
(nπ

L
at

)

sin
(nπ

L
x
)

which solves equations (9), (10) and (12). The only remaining piece to solve is
equation (11) which means we need to choose the coefficients to satisfy

u(x, 0) = f(x) =

∞
∑

n=1

cn sin
(nπ

L
x
)

.

This is precisely the odd-Fourier series (sine series) for the function f(x). Hence
we need to set

(17) cn =
2

L

∫ L

0

f(x) sin
(nπ

L
x
)

dx.

and we have a solution to problem (13).
In order to account for zero initial displacement but with initial velocity, we can

back up to equations (15) and (16). Since we want u(x, 0) = 0, we should force
c1 = 0 and we are free to choose c2. If we take a time derivative of u and plug in
t = 0, we get

ut(x, 0) = g(x) =
∞
∑

n=1

cn

nπ

L
a sin

(nπ

L
x
)

.

If we take the odd Fourier series for g(x), with coefficients given by

(18) bn =
2

L

∫ L

0

g(x) sin
(nπ

L
x
)

dx.

we see we have the equation
∞
∑

n=1

cn

nπ

L
a sin

(nπ

L
x
)

=

∞
∑

n=1

bn sin
(nπ

L
x
)

.

Forcing equality for each of the coefficients gives

cn =
L

nπa
bn =

L

nπa

2

L

∫ L

0

g(x) sin
(nπ

L
x
)

dx.

This solves every piece of equation (14) which is the zero displacement with non-zero
initial velocity.
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