
MIN-MAX FORMULAS FOR NONLOCAL ELLIPTIC OPERATORS ON

EUCLIDEAN SPACE

NESTOR GUILLEN AND RUSSELL W. SCHWAB

Abstract. An operator satisfies the Global Comparison Property if anytime a function touches
another from above at some point, then the operator preserves the ordering at the point of contact.
This is characteristic of degenerate elliptic operators, including nonlocal and nonlinear ones. In
previous work, the authors considered such operators in Riemannian manifolds and proved they
can be represented by a min-max formula in terms of Lévy operators. In this note we revisit
this theory in the context of Euclidean space. With the intricacies of the general Riemannian
setting gone, the ideas behind the original proof of the min-max representation become clearer.
Moreover, we prove new results regarding operators that commute with translations or which
otherwise enjoy some spatial regularity.

1. Introduction

A map I : C2
b (Rd)→ C0

b (Rd) is said to satisfy the Global Comparison Property (GCP) if

u ≤ v in Rd and u(x) = v(x)⇒ I(u, x) ≤ I(v, x). (1.1)

The Laplacian operator, as well as its fractional powers−(−∆)α/2 (α ∈ (0, 2)) all satisfy this prop-
erty. More generally, given a Lévy measure ν(dy) (a measure on Rd \ {0} such that min{1, |y|2}
is integrable with respect to ν) the operator

I(u, x) =

∫
Rd
u(x+ y)− u(x)− χB1(y)∇u(x) · y ν(dy),

will have the GCP. The GCP is also satisfied by Dirichlet-to-Neumann maps for elliptic equa-
tions, generators of Markov processes, Bellman-Isaacs operators in control and differential games,
among many examples. When the operator is known a priori to be local, then nonlinear examples
of maps with the GCP are of the form,

I(u, x) = F (D2u(x),∇u(x), u(x)),

where F : Sd × Rd × R → R is monotone in its first argument, and Lipschitz continuous in all
arguments.

The main contribution of this article is to address when certain operators acting on C2
b (Rd)

must necessarily enjoy a structure similar to those examples above. The canonical object used to
address this question will be a linear operator we choose to say is “of Lévy type”: those operators
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for which there exist functions, A(x) ∈ Sd, B(x) ∈ Rd, C(x) ∈ R, and measures µ(x, dy) so that

L(u, x) = tr(A(x)D2u(x)) +B(x) · ∇u(x) + C(x)u(x) (1.2)

+

∫
Rd
u(x+ y)− u(x)− 1B1(0)(y)∇u(x) · y µ(x, dy),

with A(x) ≥ 0, and sup
x

∫
Rd

min(|y|2 , 1)µ(x, dy) <∞.

We will review some recent results that show for I : C2
b (Rd) → Cb(Rd) that enjoys the GCP,

is Lipschitz, and has a natural structural constraint, there exists a family of functions, fab and
linear operators of Lévy type, Lab, so that

I(u, x) = min
a

max
b
{fab(x) + Lab(u, x)}. (1.3)

For linear operators, in the 1960’s Courrège [19] showed that all of those that satisfy the GCP
must have the form given in (1.2). All of our results here should be considered an extension of
Courrège’s result to the nonlinear setting.

In our previous work, [29], we showed such a min-max representation in (1.3). The result in
[29] in fact dealt with a more general situation where I : C2

b (M)→ C0
b (M) where M is a complete

Riemannian manifold. We will review the proof of this result in the context of Euclidean space,
where many of the arguments simplify greatly. Moreover, we prove two refinements of the main
result from [29] relevant to the Euclidean case, one involving translation invariant operators
and one for operators that behave continuously with respect to translation operators. Stated
informally, our results are the following:

Theorem 1. An operator I(u, x) that is Lipschitz and satisfies the GCP admits a min-max
formula in terms of Lévy type operators.

Theorem 2. In the previous theorem, assume further that I(u, x) commutes with translations.
Then the Lévy operators appearing in the min-max formula all commute with translations.

Theorem 3. Instead of translation invariance assume that the finite differences of I(u, x) com-
mute with translations up to a certain error depending on a modulus of continuity ω(·). Then
the Lévy operators appearing in the min-max formula have continuous coefficients with common
modulus of continuity of the form Cω(2(·)).

Theorem 1 above is a special case of the main result in [29], and Theorems 2 and 3 are new.

1.1. Assumptions and main results. Here are our main assumptions.

Assumption 1.1. The map I : C2
b (Rd) → C0

b (Rd) is Lipschitz continuous and has the Global
Comparison Property (1.1).

Assumption 1.2. The map I : C2
b (Rd) → C0

b (Rd) is translation invariant. Namely, for any

x, z ∈ Rd and u ∈ C2
b (Rd) we have

I(τzu, x) = I(u, x+ z), where τzu(x) := u(x+ z). (1.4)

Assumption 1.3. There is a non-increasing function ρ : (0,∞)→ R with ρ(R)→ 0 as R→∞
such that if u, v ∈ C2

b (Rd) are such that u ≡ v in B2R(x0), then

‖I(u)− I(v)‖L∞(BR(x0)) ≤ ρ(R)‖u− v‖L∞(Rd).

Assumption 1.4. There exists a modulus, ω, for all v, u ∈ C2
b (Rd), x, z ∈ Rd, r > 0, we have

|I(v + τ−zu, x+ z)− I(v, x+ z)− (I(v + u, x)− I(v, x)) |
≤ ω(|z|)C(r)

(
‖u‖C2(B2r(x)) + ‖u‖L∞(CBr(x))

)
.
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It is allowed that C(r) → ∞ as r → 0; in some examples C(r) may be bounded and in some it
may be unbounded.

The meaning of Assumption 1.1 and Assumption 1.2 is self-evident. Assumption 1.3 seems
rather technical, but it will be necessary to obtain compactness for a family of measures arising
in the proof (and this assumption is satisfied by a broad family of examples). Note however that
this assumption is not needed for the translation invariant case as well as the setting of Theorem
1.9 as these two theorems are obtained with different methods.

Last but not least, Assumption 1.4 can be thought of as a “coefficient regularity” assumption.
For instance, in the linear and local case, in which I is a Lévy operator without integral part,
Assumption 1.4 is equivalent to the coefficients of the operator having modulus of continuity
Cω(·) for some constant C > 0. In fact, Assumption 1.4 is stated so that it indeed linearizes to
this usual assumption that one expects in the linear case.

Remark 1.5. As mentioned above, one can check that for linear operators, Assumption 1.4 is
equivalent to the coefficients of the local part being uniformly continuous and the Lévy measures
being uniformly continuous in the TV norm along shifts in the base point, i.e.

‖µ(x+ x, ·)− µ(x, ·)‖TV (CBr) ≤ Cω(|z|).

By its design, Assumption 1.4 is a technical artifact of our proof, and as such, it is unlikely to be
sharp or even the most natural assumption. There is most likely room for improvement here. In
fact, one indication of the possibility to make a more natural assumption lies in the fact that even
when the original operator, I, is translation invariant (so the most regular dependence on x), it
does not necessarily follow that I also satisfies Assumption 1.4. This also reflects the fact that
we have taken a two completely different methods of proof for the results that concern translation
invariant operators, and ones that have a modulus with respect to translations.

Remark 1.6. In Section 6, we give a short list of some operators that fall within the scope of
Assumptions 1.1–1.4 and Theorems 1.9–1.14. At the end of Section 6, we give a list of which
assumptions each example satisfies.

Remark 1.7. We note that one subtle improvement of the current work upon our previous one
in [29] is that because of a more streamlined proof for the translation invariant case, we were
able to establish the non-translation invariant case, Theorem 1.9 (below), without the technical
Assumption 1.3. This is purely an artifact of using an approximation scheme in [29] to treat all
operators by the same method, and this turns out to have been not essential when one does not
want the extra information provided by Theorems 1.11 and 1.14.

The first theorem uses the notion of “pointwise” C2 or C1, and so we will define that property
here.

Definition 1.8. For a fixed x we say that u ∈ C2(x) (“pointwise C2 at x”) if there exists a
vector, ∇u(x), and a symmetric matrix, D2u(x), such that

as y → x,

∣∣∣∣u(y)− u(x)−∇u(x) · (y − x)− 1

2
(y − x) ·

(
D2u(x)(y − x)

)∣∣∣∣ ≤ o(|y − x|2).

Similarly if u only enjoys the existence of ∇u(x) and

as y → x, |u(y)− u(x)−∇u(x) · (y − x)| ≤ o(|y − x|),

we say that u ∈ C1(x) (“pointwise C1 at x”).

Now we can restate Theorems 1–3 above, in more precise terms.
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Theorem 1.9. If I : C2
b (Rd) → C0

b (Rd) satisfies Assumption 1.1, then, for each x, there exists
a family of linear functionals on C2(x) that depend on I and x, called K(I)x, so that for all
u ∈ C2(x)

I(u, x) = min
v∈C2

b (Rd)
max

L∈K(I)x
{I(v, x) + L(u− v)}.

Here, each L ∈ K(I)x, has the form

L(u) = tr(AxD
2u(x)) +Bx · ∇u(x) + Cxu(x) +

∫
Rd
u(x+ y)− u(x)− 1B1(0)(y)∇u(x) · y µx(dy),

and for some universal C, the terms also satisfy the bound for all x:

|Ax|+ |Bx|+ |Cx|+
∫
Rd

min{1, |y|2} µx(dy) ≤ C‖I‖Lip,C2
b→C

0
b
.

The proof of Theorem 1.9 appears in Section 3.1, which is at the end of Section 3.
We want to point out to the reader that the notation in Theorem 1.9 is intentional in its use

of subscripts for e.g. Ax, etc. This is because our construction does not actually produce L
as a linear mapping C2

b → C0
b , and so it is not correct to think of having a family of L whose

coefficients are actually functions of x. Rather, it just says that at each x there is a family
functionals that have the desired structure, but it is not clear that they can be put together
across all x to make a family of x-dependent operators.

This situation changes under other assumptions, and in the next two theorems, our method
produces a family of linear operators mapping C2

b (Rd)→ C0
b (Rd), all of the form (1.2).

Theorem 1.10. If I : C2
b (Rd)→ C0

b (Rd) satisfies Assumption 1.1 and Assumption 1.2 then there
exists a family, {fab, Lab}a,b∈K(I), that depends only on I, where for all a, b, fab are constants,

and Lab are linear translation invariant operators mapping C2
b (Rd) → C0

b (Rd) of the form (1.2)

(i.e. constant coefficients), and for all u ∈ C2
b (Rd) and x ∈ Rd we have

I(u, x) = min
a

max
b
{fab + Lab(u, x)}.

Furthermore, for a universal C, for all fab and Lab,

|fab|+ |Aab|+ |Bab|+ |Cab|+
∫
Rd

min{1, |y|2} µab(dy) ≤ C‖I‖Lip,C2
b→C

0
b
.

The proof of Theorem 1.10 appears in Section 3.1, which is at the end of Section 3.

Theorem 1.11. If I : C2
b (Rd) → C0

b (Rd) satisfies Assumption 1.1, Assumption 1.3, and As-
sumption 1.4, then, there exists a family, {fab, Lab}a,b∈K(I), that depends only on I, where for all

a, b, fab ∈ C0
b (Rd) are functions, and Lab are linear operators mapping C2

b (Rd)→ C0
b (Rd) of the

form (1.2), and for all u ∈ C2
b (Rd), we have

I(u, x) = min
a

max
b
{fab(x) + Lab(u, x)},

and for a universal C, for all fab and Lab,

‖fab‖L∞ + ‖Aab‖L∞ + ‖Bab‖L∞ + ‖Cab‖L∞ + sup
x

∫
Rd

min{1, |y|2} µab(x, dy) ≤ C‖I‖Lip,C2
b→C

0
b
.

Furthermore, if ω is as in Assumption 1.4, then the functions fab, Aab, Bab, Cab, all have a
modulus of continuity Cω(2·), while for each r > 0 we have the estimate,

‖µab(x1)− µab(x2)‖TV(CBr) ≤ C(r)ω(2|x1 − x2|), (1.5)

where as above, C(r) > 0, is a constant that may possibly (but not necessarily) have the property
that C(r)→∞ as r → 0.
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The proof of Theorem 1.11 appears in Section 5.5, which is at the end of Section 5.
Finally, we give a theorem that reduces the possible terms in the min-max over (1.2). Namely,

there are instances in which there may be no second order terms or first order terms. To state

this, we abuse notation slightly, and we give a shorthand as Cβb (Rd) to mean the following:

if β = 2 + γ, for γ ∈ (0, 1), then, we mean Cβb (Rd) = C2,γ
b (Rd);

if β = 2+, then, we mean Cβb (Rd) = C2
b (Rd);

if β = 2, then, we mean Cβb (Rd) = C1,1
b (Rd);

if β = 1 + γ, for γ ∈ (0, 1), then, we mean Cβb (Rd) = C1,γ
b (Rd);

if β = 1+, then, we mean Cβb (Rd) = C1
b (Rd);

if β = 1, then, we mean Cβb (Rd) = C0,1
b (Rd);

if β = γ, for γ ∈ (0, 1), then, we mean Cβb (Rd) = C0,γ
b (Rd).

(1.6)

Definition 1.12. For a fixed x, we say that u ∈ Cβ(x) (“pointwise Cβ(x)”) if the same re-
quirements of Definition 1.8 hold, but the estimate on the right hand side takes into account the
different decay as follows:

• if, β = 2 + γ, then u has a second order Taylor expansion and the right hand side is
O(|y − x|2+γ);
• if, β = 2+, then u has a second order Taylor expansion and the right hand side is
o(|y − x|2);
• if, β = 2, then we include this in the previous case whenever u has a second order taylor

expansion at x;
• if, β = 1 + γ, then u has a first order Taylor expansion and the right hand side is
O(|y − x|1+γ);
• if, β = 1+, then u has a first order Taylor expansion and the right hand side is o(|y − x|);
• if, β = 1, then we include this in the previous case whenever u has a first order taylor

expansion at x;
• if, β = γ ∈ (0, 1), then |u(y)− u(x)| ≤ C |y − x|γ.

Assumption 1.13. All of Assumptions 1.1 – 1.4 hold, but with all instances of C2
b (Rd) replaced

by Cβb (Rd).

Theorem 1.14. For each of Theorems 1.9, 1.10, 1.11, we have the following variation: in each
case assume that I satisfies Assumption 1.13, for some β ∈ [0, 2+] (as enumerated above). Then,
taking into account Definition 1.12 for Theorem 1.9, the min-max formula holds in each of the
previous results with the following additions: if β < 2 then Aab = 0 for all a, b, while if β < 1
then Bab = 0 for all a, b and the operators Lab take the form

Lab(u, x) = Cab(x)u(x) +

∫
Rd
u(x+ y)− u(x) µab(x, dy).

Moreover, the smaller β, the more regular the Lévy measures µab are at y = 0, namely, we have

sup
a,b,x

∫
Rd

min{1, |y|β}µab(x, dy) <∞.

The proof of Theorem 1.14 appears in Section 5.5, which is at the end of Section 5.

Remark 1.15. In Sections 4 and 5, one can see that at its heart, the fact that the modulus for I
is passed onto the coefficient functions in (1.2) is a consequence of our choice to use a Whitney
extension in an approximation to I, and the Whitney extension is well known to preserve a
modulus of continuity. The actual details are a bit more involved, but that is the main reason.
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We note the presence of the factor of 2 in the new modulus is a consequence of the Whitney
Extension method; the interested reader can see [54, Chapter VI].

A further comment regarding the assumptions is in order. Suppose that I satisfies Assumption
1.4 with ω ≡ 0. In this case, taking v ≡ 0 the assumption says that

I(τ−hu, x+ h)− I(0, x+ h) = I(u, x)− I(0, x),

and if we further assume that I(0, x) is constant (i.e. I applied to the zero function returns a
constant), then we have

I(τ−hu, x+ h) = I(u, x),

that is, I is translation invariant. However, at first sight it is not clear what happens in the
reverse direction. That is, we do not know how to show that a translation-invariant operator
automatically satisfies Assumption 1.4 with ω ≡ 0, and in fact we expect that this assumption
can be modified so that it seamlessly includes the translation invariant operators as well.

1.2. Notation. For the readers’ convenience, a summary of symbols used in the paper is pre-
sented below.

Notation Definition

d space dimension
C2
b twice differentiable functions f with bounded f,∇f, and D2f

Cβb bounded functions of class Cβ, see (1.6) for definition
Sd symmetric matrices of size d× d
‖ · ‖TV total variation norm for a measure
L(X,Y ) space of bounded linear operators from X to Y
c.h.(E) the convex hull of a set E
CE complement of a subset of Rd
F 0(x, v) upper gradient of a Lipschitz function (Definition 2.1)
∂F (x) generalized gradient of F at x (Definition 2.3)
Gn grid with step size 2−n

C(Gn) space of real valued functions defined in Gn (Definition 4.1)
C∗(Gn) subset of C(Gn) of functions vanishing outside [−2n, 2n] ∩Gn (Definition 4.1)
(∇n)1u(x) discrete gradient for step size 2−n (Definition 4.7)
(∇n)2u(x) discrete Hessian for step size 2−n (Definition 4.8)

1.3. Background. There were roughly two reasons that motivated the results we present in this
paper. First of all, the link between elliptic equations and a min-max formula for operators has
a long history, and it has been exploited extensively in the case of local operators. Until [29],
the connection was not known for nonlocal, nonlinear operators. Even so, the link between the
two was natural enough that there are at least a few results that assumed a structure like (1.3),
including [5], [35], [40], [47], [48], [51], among many others. Thus the theorems here and in [29]
give a sort of a posteriori justification to min-max assumptions that appeared in earlier works.
Secondly, a formula such as (1.3) can be very useful in connecting results about the integro-
differential theory (of which, there has been a large volume recently) with some other pursuits
that may not obviously relate to operators such as (1.2). Two recent projects that exploit or
were motivated by the min-max formulas are on some Hele-Shaw type free boundary evolutions
in [16] and some Neumann homogenization problems [30] [31]. Both of these relate to linear
and nonlinear Dirichlet-to-Neumann maps, studied in [26], and there is plenty more to learn
about the integro-differential structure in the nonlinear setting. The choice to pursue continuity
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properties such as the dependence given in (1.5), although a posteriori seems straightforward,
was not initially obvious, and it was motivated by recent results about comparison theorems for
viscosity solutions of integro-differential equations in [27].

As mentioned earlier, for linear operators, the representation of (1.2) goes back to Courrège
[19]. This was naturally connected with generators of Markov processes and boundary excursion
processes for reflected diffusions. Hsu [32] provides a similar representation for the Dirichlet to
Neumann map for the Laplacian in a smooth domain Ω, and this corresponds to studying the
boundary process for a reflected Brownian motion. If I is not necessarily linear but happens
to satisfy the stronger local comparison principle, there are min-max results by many authors,
e.g. Evans [21], Souganidis [53], Evans-Souganidis [22] and Katsoulakis [38]. In this case, the
operator takes the form,

I(u, x) = F (x, u(x),∇u(x), D2u(x)),

which can be expressed as in Theorem 1.9, but with µ(x, dh) ≡ 0. This was extended to even
include the possibility of weak solutions acting as a local semi-group on BUC(Rd), related to
image processing, in Alvarez-Guichard-Lions-Morel [1], and to weak solutions of sets satisfying
an order preserving set flow by Barles-Souganidis in [6]. In [1] it was shown under quite gen-
eral assumptions that certain nonlinear semigroups must be represented as the unique viscosity
solution to a degenerate parabolic equation.

Although it is still too early to tell, one hopes that theorems like those presented here can create
a bridge between some nonlocal equations for which regularity questions arise and the known
results about such equations when a min-max structured is known to hold. In the local setting,
there are a number of results that leverage the min-max to shed new light on certain issues, and it
would be interesting to see if similar things can be done for the nonlocal theory (see the discussion
in [29, Section 1] for an incomplete list of such results). The types of regularity results that could
find new applications via the min-max theorems here fall into roughly three categories: Krylov-
Safonov type results; regularity for translation invariant equations; and Schauder type regularity
results. For Krylov-Safonov, this means that solutions of fully nonlinear equations can be shown
to enjoy Hölder estimates depending only on the L∞ norm of the solution; some examples are:
[9], [14], [15], [37], and [49], among many others. For translation invariant equations, these are
the results that show solutions to translation invariant equations very often enjoy C1,α regularity
under mild assumptions; some examples are: [9], [17], [41], [44], [50], among others. Finally, for
Schauder regularity, we mean results that show that for x-dependent operators, under certain
regularity for the coefficients (such as Dini), solutions will have as much regularity as those
equations with “constant coefficients”; some examples are: [20], [36], [43], among others. On top
of questions of the type of Krylov-Safonov regularity mentioned above, there is another family
of regularity results that accompanies existence and uniqueness techniques for viscosity solutions
of elliptic partial-differential / integro-differential equations, and it is typically referred to as the
Ishii-Lions method, going back to [34]. Both this Ishii-Lions regularity and comparison results
could connect well with the operators treated in this paper, as many of the existing works on
nonlocal equations assume a min-max. The types of results that could be applicable are like
those in [2], [3], [4], [5], and [35], among others.

There is some more discussion of related works and background inside of the examples that
we list in Section 6.

1.4. Another description of operators satisfying the GCP. Let us describe an elementary
but useful way to view operators satisfying the GCP, which is also related to the min-max
representation. First, we introduce a family of functional spaces.
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Definition 1.16. For β ∈ [0, 2+] (using the abuse of notation in (1.6)) we define the space L∞β
as follows. First, if β 6= 1+,

L∞β := {h ∈ L∞(Rd) | |h(y)| = O(|y|β) as |y| → 0},

while for β = 1+,

L∞β := {h ∈ L∞(Rd) | |h(y)| = o(|y|β) as y → 0}.
(We note the first space requires “Big-O”, while the second space requires “little-o”.) The spaces
L∞β are Banach spaces, with norms given by

sup
y
|h(y)|min{1, |y|β}−1.

Now, suppose we are given a continuous function

F : L∞β (Rd)× Sd × Rd × R× Rd → R.

Assume that this function is monotone (non-decreasing) with respect to the first two variables.

Then, given u ∈ Cβb (Rd) define

I(u, x) := F (δxu,D
2u(x),∇u(x), u(x), x)

where we are using the notation δxu(y) := u(x + y) − u(x) − ∇u(x) · yχB1(0)(y) for β ≥ 1, and
δxu(y) := u(x+ y)− u(x) for β < 1. It is clear the operator I thus defined has the GCP.

Do all operators with the GCP arise in this form? It is easy to see that the answer is positive,
at least when β < 2. Given I : Cβ(Rd)→ C0(R), with β < 2, we define a function

F : L∞β (Rd)× Rd × R× Rd → R,

by the formula F (h, p, u, x) := I(τ−xh+ τ−xp · (·)χB1 + u, x). It is straightforward to see that for

F so defined and u ∈ Cβb (Rd) we have

I(u, x) = F (δxu,∇u(x), u(x), x).

2. Real valued Lipschitz functions on Banach Spaces

In this section we review various well known facts about Lipschitz functions on Banach spaces,
following Clarke’s book [18, Chapter 2]. We will refer most of the proofs to the relevant section
in [18]. The section ends with Theorem 2.6 which yields a min-max formula for any real valued,
Lipschitz F , such a result is neither new nor surprising, but we present it here in complete detail
for the sake of completeness.

We fix a Banach Space, denoted by X, an open convex subset K ⊂ X, and a function

F : K ⊂ X → R,
which is assumed Lipschitz with constant L > 0, that is

|F (x)− F (y)| ≤ L‖x− y‖ ∀ x, y ∈ K. (2.1)

Definition 2.1. The upper gradient of F at x ∈ K in the direction of v ∈ X, is defined as

F 0(x, v) := lim sup
t↘0

F (x+ tv)− F (x)

t
.

This can be seen as a function F 0 : K ×X → R.

Proposition 2.2. The function F 0(x, v) has the following properties

(1) For any x ∈ K, v ∈ X, and λ > 0 we have F 0(x, λv) = λF 0(x, v).
(2) For any x ∈ K, and v, w ∈ X we have |F 0(x, v)− F 0(x,w)| ≤ L‖v − w‖.
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(3) If (xk, vk)→ (x, v) then lim supF 0(xk, vk) ≤ F 0(x, v).
(4) F 0(x,−v) = (−F )0(x, v).

Proof. We refer the reader to [18, Proposition 2.1.1]. �

Definition 2.3. The generalized gradient of F at x ∈ K is the subset of X∗ given by

∂F (x) := {` ∈ X∗ | F 0(x, v) ≥ 〈`, v〉 ∀ v ∈ X}.

We will denote by ∂F the convex hull of the union of ∂F (x),

∂F := c.h.

(⋃
x∈K

∂F (x)

)
.

Proposition 2.4. The set ∂F (x), x ∈ K, has the following properties

(1) ∂F (x) is a non-empty, convex, weak∗-compact subset of X∗.
(2) ‖`‖ ≤ L for every ` ∈ ∂F (x).
(3) For any v ∈ X, we have that

F 0(x, v) = max
`∈∂F (x)

〈`, v〉.

Proof. We refer the reader to [18, Proposition 2.1.2].
�

The following theorem, due to Lebourg, is a generalization of the mean value theorem for
differentiable functions.

Theorem 2.5 (Lebourg’s Theorem). Let x, y be points in K. Then there exist z of the form
z = tx+ (1− t)y for some t ∈ [0, 1], such that for some ` ∈ ∂F (z)

F (x)− F (y) = 〈`, x− y〉.

Proof. We refer the reader to [18, Theorem 2.3.7].
�

Using the generalized gradient and Lebourg’s theorem we can easily prove a min-max formula
for Lipschitz functionals. Observe this is a general result for Lipschitz functionals in general

Banach spaces, and it does not involve anything like GCP (functionals with the GCP on Cβb (Rd)
are considered in the next section).

Theorem 2.6. Let F : K ⊂ X → R be a Lipschitz function, with K convex, then for all x ∈ K,

F (x) = min
y∈K

max
`∈∂F
{F (y) + 〈`, y − x〉}.

Proof. According to Theorem 2.5, given x, y ∈ K there is some ` ∈ ∂F such that

F (x)− F (y) = 〈`, x− y〉.

In other words, for any x and y in K we have the inequality

F (x) ≤ max
`∈∂F

{F (y) + 〈`, x− y〉} .

This also yields an equality for y = x, thus F (x) = min
y∈K

max
`∈∂F

{F (y) + 〈`, x− y〉}.
�
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3. Functionals with the GCP, revisited

Throughout this section K denotes an open convex set of Cβb (Rd) (see (1.6)). Moreover, for
ρ > 0, we shall write

Kρ =
{
u ∈ Cβb (Rd) | ‖v − u‖Cβ < ρ⇒ v ∈ K

}
.

Definition 3.1. Let F be a map F : K ⊂ Cβb (Rd)→ R and x ∈ Rd. Such a functional is said to
have the Global Comparison Property with respect to x if F (u) ≤ F (v) for any pair of functions
u, v ∈ K such that u(y) ≤ v(y) for all y and u(x) = v(x) –we will say in such a case that v
touches u from above at x.

The following two auxiliary functions will be useful throughout the section: Fix φ0 : R → R,
a nondecreasing C∞ function such that 0 ≤ φ0 ≤ 1, φ0(x) = 0 for x ≤ 0, φ0(x) = 1 for x ≥ 1.
Then, given r,R > 0 we define the functions

φr,R(y) := φ0

(
|y| −R
r

)
(3.1)

ψr,R(y) := 1− φr,R(y) (3.2)

The following Proposition was first proved in [29, Lemma 4.15, Corollary 4.16], we review the
proof here for the reader’s convenience.

Proposition 3.2. Suppose that F : K ⊂ Cβb (Rd) → R is a Lipschitz functional which has the
GCP with respect to x. Fix ρ > 0. There is a constant C(F, ρ) such that given R > 0, r ∈ (0, 1),
and u, v ∈ Kρ, then

|F (u)− F (v)| ≤ C(F, ρ)r−β
(
‖u− v‖Cβ(BR+r(x)) + ‖u− v‖L∞(Rd\BR(x))

)
.

Remark 3.3. It is worth comparing Proposition 3.2 with Assumption 1.3. In the latter, one is
interested in how I(u, x) depends very little on the values of u far away from x (so, as r →∞),
whereas the former deals with a weak version of this property that holds only for r ∈ (0, 1) but
which follows alone from the GCP without the need for further assumptions on F .

Proof. Take φ ∈ C2
b (Rd), such that 0 ≤ φ ≤ 1 and φ(x) = 0. Then, for any y we have

u(y) ≤ w(y) := u(y) + φ(y)
(
‖u− v‖L∞(spt(φ)) − (u(y)− v(y))

)
,

with the above being an equality for y = x. Now, let ρ0 be chosen so that

2‖φ‖C2(Rd)ρ0 ≤ ρ.

Then, let us suppose that u, v ∈ Kρ are such that ‖u − v‖
Cβb (Rd)

≤ ρ0. In this case, we have

w ∈ K since u ∈ Kρ and in this case the GCP says that

F (u) ≤ F (w).

Moreover, F (w) ≤ F (v) + L‖w − v‖Cβ and w − v = (1− φ)(u− v) + φ‖u− v‖L∞(spt(φ)), thus

F (u)− F (v) ≤ L‖(1− φ)(u− v)‖Cβ + L‖u− v‖L∞(spt(φ))‖φ‖Cβ .

Consider the function φ(y) = φr,R(y − x). Thanks to r ∈ (0, 1), the following estimates hold

‖φ‖Cβ ≤ Cr−β,

‖(1− φ)(u− v)‖Cβ ≤ Cr−β‖u− v‖Cβ(BR+r)
.
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Substituting these in the inequality for F (u)−F (v), the desired inequality follows when ‖u−v‖Cβ
is no larger than ρ0. Otherwise, ‖u− v‖Cβ ≥ ρ0 and iterating the inequality in the previous case
one obtains that

|F (u)− F (v)| ≤ C(F, ρ)r−β
(
‖u− v‖Cβ(BR+r(x)) + ‖u− v‖L∞(Rd\BR(x))

)
.

�

Lemma 3.4. Let F : K ⊂ Cβb (Rd)→ R be a Lipschitz functional which has the GCP with respect
to x. Then, for every ` ∈ ∂F we have

〈`, v〉 ≤ 0 if v ≤ 0 everywhere and v(x) = 0.

In other words, if F has the GCP with respect to x, then any ` arising as a generalized gradient
of F also has the GCP with respect to x. Furthermore, for any such ` and r ∈ (0, 1) we have

|〈`, v〉| ≤ Cr−β
(
‖v‖Cβ(Br) + ‖v‖L∞(Rd)

)
.

Proof. Let u ∈ K, and let v ∈ Cβb (Rd) be such that

v ≤ 0 in Rd, v(x) = 0.

Then, ut = u + tv touches u from below at x for each small t, therefore F (ut) ≤ F (u) for every
t, and

F 0(u, v) = lim sup
t→0

F (u+ tv)− F (u)

t
≤ 0.

Since,

max
`∈∂F (u)

〈`, v〉 = F 0(u, v),

it follows that 〈`, v〉 ≤ 0 for any ` ∈ ∂F (u), and the first part of the Lemma is proved. For
the second part, one argues similarly, except that instead of invoking the GCP, one applies
Proposition 3.2 in order to pass the same estimate for any ` ∈ ∂F . �

Fix a functional ` having the GCP with respect to x. Then, define C` by

C` := 〈`, 1〉. (3.3)

This associates a constant C` to any ` having the GCP. Likewise, we shall associate a vector B`
and positive semi-definite matrix A`. First, let us introduce some notation,

S := {φ ∈ C2
c (B2(0)) | φ ≡ 1 in a neighborhood of 0, 0 ≤ φ ≤ 1 in all of Rd}. (3.4)

Given φ, η ∈ S, define the function

Pφ,η,u,x(·) =

 u(x) + φ(· − x)(∇u(x), · − x) + 1
2η(· − x)(D2u(x)(· − x), · − x) if β ∈ [2, 3),
u(x) + φ(· − x)(∇u(x), · − x) if β ∈ [1, 2),

u(x) if β ∈ (0, 1).
(3.5)

For x = 0 we will simply write Pφ,β,u. Observe that, for example, if β = 2 then Pφ,η,u,x is a smooth
function which, in a neighborhood of x, coincides with the second order Taylor polynomial of the
function u at the point x.

Definition 3.5. Given any φ ∈ S let B`,φ be the vector defined by

(B`,φ, e) = 〈`, φ(·)(·, e)〉, ∀ vectors e.

At the same time, given η ∈ S let A`,η be the symmetric matrix defined by

tr(A`,ηM) = 〈`, η(·)1
2(M(·), ·)〉, ∀ symmetric matrices M.
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The following lemmas will characterize all of functionals having the GCP with respect 0 (com-
pare with Courrege’s original proof [19], see also [29]).

Lemma 3.6. Let ` : Cβb (Rd)→ R be a bounded linear functional which has the GCP with respect

to 0, and φ, η ∈ S (defined in (3.4)). There is a positive measure µ` on Rd \ {0} with∫
Rd\{0}

min{1, |y|β} µ`(dy) ≤ C‖`‖,

such that for any u ∈ Cβb (Rd) we have the following representation,

for β ≥ 2, and u ∈ Cβb (Rd) ∩ C2(0),

〈`, u〉 = C`u(0) + (B`,φ,∇u(0)) + tr(A`,ηD
2u(0)) +

∫
Rd
u(y)− Pφ,η,u(y) µ`(dy),

for β ∈ [1, 2), and u ∈ Cβb (Rd) ∩ C1(0),

〈`, u〉 = C`u(0) + (B`,φ,∇u(0)) +

∫
Rd
u(y)− Pφ,η,u(y) µ`(dy),

for β ∈ (0, 1), and u ∈ Cβb (Rd),

〈`, u〉 = C`u(0) +

∫
Rd
u(y)− u(0) µ`(dy).

(The notation, C2(0) and C1(0), appears in Definition 1.8.)

Remark 3.7. We want to note that the dependence of µ only on ` is not a typo. Even though
the vector B`,φ and matrix A`,η clearly depend on the functions φ and η, the reader can see in
the proof in (3.6) that µ` does not depend on φ or η.

Proof. It suffices to prove the representation formula for u ∈ C2
b (Rd) (even if β 6= 2), as it trivially

extends to all of Cβb (Rd) by approximation. We fix u ∈ C2
b (Rd)∩C2(0). We recall Pφ,η,u is defined

in (3.5). Since Pφ,η,u ∈ Cβb (Rd) for each fixed φ, η, we may write

u = u− Pφ,η,u + Pφ,η,u,

and linearity gives

〈`, u〉 = 〈`, Pφ,η,u〉+ 〈`, u− Pφ,η,u〉

Let us study each of these two terms. Using the definition of C`, B`,φ, and A`,η, we have for β ≥ 2

〈`, Pφ,η,u〉 = u(0)〈`, 1〉+
d∑
i=1

∂iu(0)〈`, xiφ(x)〉+
1

2

d∑
i,j=1

∂2
iju(0)〈`, η(x)xixj〉

= C`u(0) + (B`,φ,∇u(0)) + 1
2tr(A`,ηD

2u(0)),

as well as the corresponding expressions in the other cases when β < 2. Next, we analyze the
second term in the expression for 〈`, u〉 above, that is

〈`, u− Pφ,η,u〉.

First take the case β 6= 1. Given w ∈ Cβb (Rd), define w̃ by

w̃(x) := w(x)
|x|β

1 + |x|β
.



Min-max formulas for nonlocal elliptic operators on Euclidean Space 13

Observe that since β 6= 1, the function 1̃ = |x|β(1 + |x|β)−1 belongs to Cβb (Rd). The linear

transformation w 7→ w̃ defines a linear functional ˜̀ via the relation

〈˜̀, w〉 := 〈`, w̃〉.

This clearly defines a bounded functional on Cβb (Rd). In fact, however, this functional extends

uniquely to a bounded functional in C0
b (Rd): since w̃ is touched from above at 0 by the function

‖w‖L∞ 1̃, the GCP guarantees that

|〈˜̀, w〉| ≤ ‖w‖L∞〈`, |x|
β

1+|x|β 〉.

This shows ˜̀ is a uniquely defined continuous functional on C0
b (Rd) whose norm as a functional

on C0
b (Rd) is no larger than ‖`‖‖ |x|

β

1+|x|β ‖Cβ . It follows there is a measure µ̃ such that

〈˜̀, w〉 =

∫
Rd
w(y) µ̃(dy). (3.6)

Moreover, since 〈˜̀, w〉 ≥ 0 whenever w ≥ 0, µ̃(dy) is a non-negative measure. Now, since
u ∈ C2

b (Rd), we have that the function

w(x) := (u(x)− Pφ,η,u(x))
1 + |x|β

|x|β
,

remains continuous as x→ 0, so w ∈ C0
b (Rd) and thus 〈˜̀, w〉 is well defined. In this case, we have

〈`, u− Pφ,η,u〉 = 〈˜̀, w〉,
and we obtain the formula

〈`, u− Pφ,η,u〉 =

∫
Rd

(u(y)− Pφ,η,u(y))
1 + |y|β

|y|β
µ̃(dy).

In particular, taking µ(dy) := 1+|y|β
|y|β µ̃(dy), it follows that∫

Rd\{0}
min{1, |y|β}µ(dy) . ‖`‖‖ |x|

β

1+|x|β ‖Cβ <∞,

and

〈`, u− Pφ,η,u〉 =

∫
Rd\{0}

u(y)− Pφ,η,u(y) µ(dy).

Revisiting the expression of `, we have when β ≥ 2

〈`, u〉 = C`u(0) + (B`,φ,∇u(0)) + 1
2tr(A`,ηD

2u(0)) +

∫
Rd\{0}

u(y)− Pφ,η,u(y) µ(dy),

and the analogous formulas follow for the other cases where β 6= 1, per the change in definition
of the function Pφ,η,u in (3.5). It remains to consider the case β = 1.

Since |x| is not a C1 function, we are going to approximate it by a more regular function. For
every small ε > 0 we repeat the argument above with β = 1 + ε and conclude that for some µε
we have the formula

〈`, u〉 = C`u(0) + (B`,φ,∇u(0)) +

∫
Rd\{0}

u(y)− Pφ,η,u(y) µε(dy),

and this measure µε is positive and satisfies the bound∫
Rd\{0}

min{1, |y|β}µ(dy) . ‖`‖‖ |x|
1+ε

1+|x|1+ε ‖C1 .



14 N. Guillen, R. Schwab

Since

sup
ε∈(0,1)

‖ |x|
1+ε

1+|x|1+ε ‖C1 <∞,

it follows that the respective finite measures {µ̃ε}ε∈(0,1) have uniformly bounded mass. Therefore,
it is not difficult to show (using ` to get tightness for the µ̃ε) that along a subsequence ε→ 0 we
can find a limit µ̃, and if we let µ := (1 + |y|)|y|−1µ̃ then∫

Rd\{0}
min{1, |y|}µ(dy) <∞,

and again, for any u ∈ C2
b (Rd),

〈`, u〉 = C`u(0) + (B`,φ,∇u(0)) +

∫
Rd\{0}

u(y)− Pφ,η,u(y) µ(dy),

�

We consider the following special functions. For δ > 0, define (see (3.2) for definition of ψr,R)

φδ(x) := ψδ,1−2δ, (3.7)

ηδ(x) := ψδ,δ(x). (3.8)

Note that φδ ≡ 1 inside B1−2δ and φδ ≡ 0 outside B1−δ, while ηδ ≡ 1 inside Bδ and ηδ ≡ 0
outside B2δ. Furthermore, we note that δ ≤ δ′ implies that ηδ ≤ ηδ′ .

Lemma 3.8. Assume that β ∈ [0, 3), l : Cβb (Rd) → R is a bounded linear functional with the
GCP with respect to 0, and that A`,η, B`,φ are as in Definition 3.5. Taking ηδ as in (3.8), the
limit

A` := lim
δ↘0

A`,ηδ ,

exists for all β ∈ [0, 3), and A` ≡ 0 if β < 2. Moreover, if φδ is as in (3.7), there is a sequence
δk ↘ 0 such that the following limit exists

B` := lim
k→∞

B`,φδk .

Proof. Let η1, η2 ∈ S and such that η1 ≤ η2. Then for any positive semi-definite M we have

1
2η1(x)(Mx, x) ≤ 1

2η2(x)(Mx, x), with equality at x = 0.

Since ` has the GCP with respect to 0, it follows that

〈`, 1
2η1(x)(Mx, x)〉 ≤ 〈`, 1

2η2(x)(Mx, x)〉.

From this monotonicity and the elementary inequality |〈`, 1
2η(x)(Mx, x)〉| ≤ C|M |maxij ‖ηxixj‖Cβ

we conclude that the following limit exists for every positive semi-definite M

lim
δ↘0
〈`, 1

2ηδ(x)(Mx, x)〉.

At the same time, when β < 2 we have ‖ηδxixj‖Cβ → 0 as δ ↘ 0 for all i, j, so in this case the
limit is zero. Now, given a symmetric matrix M , write M = M+ −M−, where both M+ and
M− are positive semi-definite. Then, we also have that the limit

lim
φ∈S,η↘0

〈`, 1
2η(x)(Mx, x)〉
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exists for any symmetric matrix M . It is clear then that this limit is linear as a function of M ,
and therefore, there is a unique symmetric matrix A` such that

tr(A`M) = lim
η↘0
〈`, 1

2
η(x)(Mx, x)〉. (3.9)

Moreover, this matrix A` is positive semi-definite and A`,ηδ → A` as δ ↘ 0, and A` = 0 when
β < 2. It remains to analyze the limit of B`,φδ along a subsequence. For every δ ∈ (0, 1)

(Bφδ)i = 〈`, φδxi〉.
Now, recall the estimate from Lemma 3.4, which implies

|〈`, φδxi〉| ≤ C(‖φδxi‖Cβ(B1/2) + ‖φδxi‖L∞(Rd)).

A direct computation shows that

sup
0<δ<1

‖φδxi‖Cβ(B1/2) <∞.

It follows that

sup
0<δ<1

|Bφδ | <∞,

and by compactness, there must be a subsequence δk → 0 for which {B`,φδk}k converges.
�

Lemma 3.9. Assume that β ∈ [0, 3). Let ` : Cβb (Rd) → R be a bounded linear functional which

has the GCP with respect to 0. For β ≥ 2 and any u ∈ Cβb (Rd)∩C2(0), we have the representation

〈`, u〉 = C`u(0) + (B`,∇u(0)) + tr(A`D
2u(0)) +

∫
Rd
u(y)− u(0)− χB1(0)(∇u(0), y) µ`(dy).

This representation is unique. This means that if there were C̃, B̃, Ã and µ̃ a measure in Rd\{0}
all such that

〈`, u〉 = C̃u(0) + (B̃,∇u(0)) + tr(ÃD2u(0)) +

∫
Rd
u(y)− u(0)− χB1(0)(∇u(0), y) µ̃(dy).

for all u, then C̃ = C`, B̃ = B`, Ã = A`, and µ̃ = µ`. Furthermore, if β < 2 and u ∈
Cβ(Rd) ∩ C1(0), then A` = 0, and if β < 1, then B` = 0 and the integrand on the right can be
replaced with just u(y)− u(0).

Proof. Let δ, δ′ ∈ (0, 1). Applying Lemma 3.6 with the functions φδ and ηδ′ ,

〈`, u〉 = C`u(0) + (B`,φδ ,∇u(0)) + tr(A`,ηδ′D
2u(0)) +

∫
Rd
u(y)− Pφδ,ηδ′ ,u(y) µ`(dy).

Since min{1, |y|β} is integrable against µ`, it follows that

lim
δ′↘0

∫
Rd\{0}

ηδ′(y)(D2u(0)y, y) µ`(dy) = 0.

Therefore,

lim
δ′↘0

∫
Rd\{0}

u(y)− Pφδ,ηδ′ ,u(y) µ`(dy) =

∫
Rd\{0}

u(y)− u(0)− φδ(y)(∇u(0), y) µ`(dy).

Then, thanks to Lemma 3.8, the formula for 〈`, u〉 becomes (for every fixed δ ∈ (0, 1))

〈`, u〉 = C`u(0) + (B`,φδ ,∇u(0)) + tr(A`D
2u(0)) +

∫
Rd\{0}

u(y)− u(0)− φ(y)(∇u(0), y) µ`(dy).
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Now, let δk ↘ 0 be chosen so that B`φδk → B` (which can be done thanks to Lemma 3.8). From

the definition of φδ, we have that

u(y)− u(0)− φδk(y)(∇u(0), y) is monotone in k.

At the same time, for every y ∈ Rd we have

lim
k→∞

φδk(y) = χB1(0).

Therefore, by monotone convergence we have

lim
k→∞

∫
Rd\{0}

u(y)− u(0)− φδk(y)(∇u(0), y) µ`(dy) =

∫
Rd\{0}

u− u(0)− χB1(y)(∇u(0), y) µ`(dy).

From where it follows that

〈`, u〉 = C`u(0) + (B`,∇u(0)) + tr(A`D
2u(0)) +

∫
Rd\{0}

u(y)− u(0)− χB1(0)(y)(∇u(0), y) µ`(dy),

as claimed. It remains to prove the uniqueness part. For this, it is enough to show that if for all
u we have 〈`, u〉 = 0 and

〈`, u〉 = C`u(0) + (B`,∇u(0)) + tr(A`D
2u(0)) +

∫
Rd
u(y)− u(0)− χB1(0)(∇u(0), y) µ`(dy),

then C` = 0, B` = 0, A` = 0 and µ` = 0. First, consider any u with compact support which is
disjoint from {0}, for such a u we have

〈`, u〉 =

∫
Rd
u(y) µ`(dy),

Since u can be any function with compact support in Rd \ {0}, it follows that µ` = 0. Evaluating
` at the function u(x) ≡ 1 we obtain C` = 0. Lastly, evaluating ` at all of the functions of the
form (x, e), e ∈ Rd and (Mx, x), M symmetric matrix, we see that B` · e = 0 for any vector e
and tr(AM) = 0 for any symmetric matrix M , so that B` = 0 and A` = 0.

�

By a simple change of variables, Lemma 3.9 implies the following.

Corollary 3.10. Assume that x is fixed, β ∈ [0, 3), and let ` : Cβb (Rd)→ R be a bounded linear

functional which has the GCP with respect to x. For β ≥ 2 any u ∈ Cβb (Rd)∩C2(x) we have the
representation

〈`, u〉 = C`u(x) + (B`,∇u(x)) + tr(A`D
2u(x)) +

∫
Rd
u(x+ y)− u(x)− χB1(0)(∇u(x), y) µ`(dy).

As before, this representation is unique, and when β < 2 and u ∈ Cβb (Rd)∩C1(x), we have A` = 0,
while for β < 1 we have B` = 0 and the integrand can be replaced with just u(x+ y)− u(x).

3.1. Proofs of Theorems 1.9 and 1.10. With Lemmas 3.4 and 3.9 and Corollary 3.10 in hand,
we can now prove Theorems 1.10 and 1.9.

Proof of Theorem 1.10. Consider the functional,

F (u) := I(u, 0).

Now, by Theorem 2.6, we have that

F (u) = min
a

max
b
{fab + 〈`ab, u〉}.
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By Lemma 3.4, each `ab is a linear operator having the GCP with respect to 0, in which case

Lemma 3.9 says that for u ∈ Cβb (Rd) ∩ C2(0),

〈`ab, u〉 = tr(AabD
2u(0)) +Bab · ∇u(0) + Cabu(0) +

∫
Rd
u(y)− u(0)− χB1(0)(∇u(0), y) µab(dy).

The translation invariance of I boils down to the identity

I(u, x) = F (τxu).

Therefore,

I(u, x) = min
a

max
b
{fab + 〈`ab, τxu〉}

However, 〈`ab, τxu〉 has a simple expression, namely

tr(AabD
2u(x)) +Bab · ∇u(x) + Cabu(x) +

∫
Rd
u(x+ y)− u(x)− 1B1(0)∇u(x) · y µab(dy),

and this proves the theorem. �

Proof of Theorem 1.9. The beginning of the proof is similar to that of the previous one. For each
x ∈ Rd, define a functional

Fx(u) := I(u, x), ∀ u ∈ Cβb (Rd).
Applying Theorem 2.6, it follows that

Fx(u) := min
v∈Cβb (Rd)

max
`∈∂Fx

{Fx(v) + 〈`, u− v〉}.

Applying Lemma 3.4, it follows that for any ` ∈ ∂Fx

〈`, u〉 = Cu(x) + (B,∇u(x)) + tr(AD2u(x)) +

∫
Rd
u(x+ y)− u(x)− χB1(0)(∇u(x), y) µ(dy).

Since Fx(v) = I(v, x) this proves the Theorem, with K(I)x = {L | L(u) = 〈`, u〉 for ` ∈ ∂Fx} .
�

Remark 3.11. It is worthwhile to compare the proof of Theorem 1.9 above to the much longer
and complicated one given in [29]. The simplicity here is made possible by the use of a mean
value theorem for Lipschitz functionals (Theorem 2.5) in the infinite dimensional setting, which
suffices to prove Theorem 1.9 as it involves a min-max formula in terms of linear functionals in
C2
b and not linear operators from C2

b (Rd) to C0
b (Rd). The more complicated method from [29]

is however still of value, specially if one is interested in obtaining a min-max representation in
terms of a family of linear operators from C2

b to C0
b . Moreover, it is by adapting the method from

[29] that we are able to prove Theorem 1.11, after analyzing the spatial properties of the finite
dimensional approximations (see in Section 5).

4. Finite Dimensional Approximations to Cβb (Rd)

4.1. Graph approximations. The following nested family of sets will be important in what
follows

Gn := 2−nZd.

It will be convenient to write hn := 2−n. Then, hn represents the maximum possible distance
between x ∈ Rd and Gn, and in particular dist(x,Gn) ≤ hn for all x ∈ Rd. Observe that

G1 ⊂ G2 ⊂ G3 . . . ,

and note also the union of the sets Gn is dense in Rd.
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Definition 4.1. We consider the following function spaces

C(Gn) := {u : Gn → Rd},

C∗(Gn) := {u ∈ C(Gn) | u(x) = 0 if x 6∈ [−2n, 2n]d}.

These spaces will be related to Cβb (Rd) by restriction, which we think of as a map denoted by Tn
and given by

Tn : Cβb (Rd)→ C(Gn), Tnu := u|Gn .

Remark 4.2. The space C∗(Gn) is a finite dimensional vector space.

4.2. Cube decomposition and partition of unity. In this section we shall apply the Whitney
theory to extend functions in a grid rZd to all of Rd. Since it is in our interest for the Whitney
construction to be compatible with the grid structure, we shall do the usual cube decomposition
making sure the resulting family of cubes is invariant under translations by vectors in rZd, the
resulting construction is illustrated in Figure 1.

Lemma 4.3. For every r > 0, there exists a collection of cubes {Qk}k such that

(1) The cubes {Qk}k have pairwise disjoint interiors.
(2) The cubes {Qk}k cover Rd \ rZd
(3) c1diam(Qk) ≤ dist(Qk,Zd) ≤ c2diam(Qk).
(4) For every h ∈ rZd, there is a bijection σh : N → N such that Qk + h = Qσhk for every

k ∈ N.

Figure 1. A (periodic) cube decomposition of Rd \ Zd

Proof. We consider the case r = 1, once the collection of cubes is {Qk}k obtained in this case,
the general case follows via scaling by taking the family {rQk}k .

Consider the cube Q0 = [−1/2, 1/2]d, letM0 denote the family of 2d equal size cubes obtained
from Q0 by bisecting each of its sides. LetMk denote the family of cubes obtained from applying
this same procedure to each of the cubes inMk−1. Note that the side length of each cube inMk

is just 2−k. Now, we construct a family F0 as follows, with Rk := {2
√
d2−k ≤ |x| ≤ 2

√
d2−(k−1)}

for each k ∈ N, then

F0 :=
⋃
k

{Q ∈Mk : Q ∩Rk 6= ∅}.
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Observe that if Q ∈ F0 then Q ∈Mk for some k and there is some x ∈ Q such that 2
√
d2−k ≤ |x|

and |x| ≤ 2
√
d2−(k−1). This means,

√
d2−k = 2

√
d2−k − diam(Q) ≤ dist(Q, 0) ≤ 2

√
d2−k,

and since diam(Q) =
√
d2−k, we conclude that

diam(Q) ≤ dist(Q, 0) ≤ 4diam(Q) ∀ Q ∈ F0.

On the other hand, we have that ⋃
Q∈F0

Q = [−1/2, 1/2]d \ {0}.

If F denotes the subfamily of maximal cubes in F0, it follows that: the union of these cubes
is still [−1/2, 1/2]d \ {0}, the inequality diam(Q) ≤ dist(Q, 0) ≤ 4diam(Q) holds for each Q ∈ F ,
and the cubes have pairwise disjoint interiors.

Denote by {Qk}k an enumeration of the family of cubes of the form Q+ z, where Q ∈ F and
z ∈ Zd. It is clear that {Qk}k covers all of Rd \ Zd and that these cubes have pairwise disjoint
interiors. Furthermore, for any h ∈ Zd the map Q → Q + h gives a bijection of the set {Qk}k
onto itself, therefore one can represent it via a bijection σh : N → N so that Qk + h = Qσhk.

Last but not least, as each cube of the form Q+ z is closest to z than to any other point in Zd,
property (3) follows from the respectively inequality for the family F .

�

Remark 4.4. We apply Lemma 4.3 with r = 2−n, for some n ∈ N, and for the rest of the section
shall refer to the resulting cubes as {Qn,k}k.

Furthermore, for every n and k, we will denote the center of Qn,k by yn,k, and for each n and
k we will denote by ŷn,k the unique point in Gn such that

dist(yn,k, Gn) = |yn,k − ŷn,k|,

(note that there is only one since by construction not a single center yn,k lies at equidistance to
two different lattice points).

In particular, for each of the bijections σh : N→ N from Lemma 4.3 we have

yn,k + h = yn,σhk, ŷn,k + h = ŷn,σhk, ∀ n, k.

Remark 4.5. In all what follows, given a cube Q, we shall denote by Q∗ the cube with same
center as Q but whose sides are increased by a factor of 9/8. Observe that for every n and k, we
have Q∗n,k ⊂ Rd \ 22−nZd, and that any given x lies in at most some number C(d) of the cubes
Q∗k.

Proposition 4.6. For every n, there is a family of functions φn,k(x) such that

(1) 0 ≤ φn,k(x) ≤ 1 for every k and φn,k ≡ 0 outside Q∗n,k (using the notation in Remark 4.5)

(2)
∑

k φn,k(x) = 1 for every x ∈ Rd \Gn.
(3) There is a constant C, independent of n and k, such that

|∇iφn,k(x)| ≤ C

diam(Qn,k)i
.

(4) For every z ∈ Gn, we have

φn,k(x− z) = φn,σzk(x), ∀ k, x,

where σz are the bijections introduced above.
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Proof. Fix a C∞ function φ such that

0 ≤ φ ≤ 1,

φ ≡ 1 in Q0 = [−1/2, 1/2]d,

φ ≡ 0 outside Q∗0.

Let `(Q) denote the common length for the sides of Qn,k, and with yn,k as given in Remark 4.4
we define

φ̃n,k := φ

(
x− yn,k
`n,k

)
.

Consider the function

Φ(x) =
∑
k

φ̃n,k(x).

It follows from Remark 4.5 that given any x ,at most C(d) of the terms appearing in the sum
are non-zero in a neighborhood of x, and therefore Φ is a smooth function. Then, define

φn,k(x) := φ̃n,k(x)Φ(x)−1.

It is clear that the functions {φn,k}k satisfy properties (1) and (2). Property (3) follows easily
from the chain rule, using the differentiability of the function φ. It remains to check property
(4), let z ∈ Gn, then

φn,k(x− z) = φ

(
x− (yn,k + z)

`(Qn,k)

)
Φ(x− z)−1

= φ

(
x− yn,σzk
`(Qn,σzk)

)
Φ(x)−1 = φn,σzk(x),

where we used that `(Qn,k) = `(Qn,σzk), which follows clearly from the definition of σz. �

4.3. Discrete derivatives. In what follows, it will be in our interest to approximate the first

and second derivatives of a function u ∈ Cβb (Rd) (see (1.6) for our convention regarding the

meaning of Cβb ) at a point x ∈ Gn using only information about the values of u on Gn. This
motivates the following two definitions (we recall that hn = 2−n).

Definition 4.7. The vector (∇n)1u(x) is defined via the system of equations (k = 1, . . . , d)

(∇n)1u(x), ek) := (2hn)−1[u(x+ hnek)− u(x− hnek)]

Definition 4.8. The matrix (∇n)2u(x) is defined via the system of equations (k, ` = 1, . . . , d),

((∇n)2u(x)ek, e`) := h−2
n [u(x+ hnek + hne`)− u(x+ hnek)− u(x+ hne`) + u(x)]

Remark 4.9. From the definition it is clear that these discrete derivatives commute with trans-
lations with respect to a vector z ∈ Gn. That is, given a function u and z ∈ Gn then for every
x ∈ Gn we have

((∇n)1τzu)(x) = ((∇n)1u)(x+ z)

Depending on how regular the function u is, these discrete derivative operators enjoy quanti-
tative “continuity estimates” as functions on Gn. An important point being that these estimates
are uniform in n once u is fixed.
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Proposition 4.10. There is a universal constant C such that for u ∈ Cβb (Rd) and x ∈ Gn,

|(∇n)1u(x)−∇u(x)| ≤ C‖u‖Cβhβ−1
n , if β ∈ [1, 2],

|(∇n)2u(x)−D2u(x)| ≤ C‖u‖Cβhβ−2
n , if β ∈ [2, 3).

Proof. See appendix.
�

Proposition 4.11. Fix u ∈ Cβb (Rd). Then, given x1, x2 ∈ Gn, we have

|u(x1)− u(x2)| ≤ C‖u‖Cβ |x1 − x2|β, if β ∈ [0, 1],

|(∇n)1u(x1)− (∇n)1u(x2)| ≤ C‖u‖Cβ |x1 − x2|β−1, if β ∈ [1, 2],

|(∇n)2u(x1)− (∇n)2u(x2)| ≤ C‖u‖Cβ |x1 − x2|β−2, if β ∈ [2, 3].

Proof. See appendix.
�

4.4. The Whitney Extension and Projection operators.

Definition 4.12.

pβu,k(x) :=


u(ŷn,k) if β ∈ [0, 1)
u(ŷn,k) + (∇1

nu(ŷn,k), x− ŷn,k) if β ∈ [1, 2)
u(ŷn,k) + (∇1

nu(ŷn,k), x− ŷn,k) + 1
2

(
∇2
nu(ŷn,k)(x− ŷn,k), (x− ŷn,k)

)
if β ∈ [2, 3)

We are now ready to define the Whitney extension operator.

Eβn(u, x) :=

{
u(x) if x ∈ Gn,∑
k

pβu,k(x)φn,k(x) if x 6∈ Gn. (4.1)

The projector operator πβn : Cβb (Rd)→ Cβb (Rd) is given by

πβn := Eβn ◦ Tn, (4.2)

where we recall that Tnu = u|Gn (Definition 4.1).

Theorem 4.13. There is a constant C such that for any n and any u ∈ Cβb (Rd) we have

‖πβnu‖Cβ(Rd) ≤ C‖u‖Cβ(Rd).

Proof. This follows arguing exactly as in [54, Chapter VI, Theorem 3 and 4], making use of
the regularity estimates in Proposition 4.11. Since this is a standard argument, we omit the
details. �

Proposition 4.14. Let z ∈ Gn and u ∈ Cβb , then.

πβn(τzu) = τzπ
β
n(u).

Proof. Let us show that πβn(τzu)(x) = τzπ
β
n(u)(x) for every x ∈ Rd and z ∈ Gn. Note that if

x ∈ Gn then the equality is trivial, so let us take x ∈ Rd \Gn and z ∈ Gn, then we have

πβn(τzu)(x) =
∑
k

pβτzu,k(x)φn,k(x).

Furthermore, it is not difficult to check that (see Remark 4.9)

pβτzu,k(x) = pβu,σzk(x+ z),
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while part (4) of Proposition 4.6 implies that

φn,k(x) = φn,σzk(x+ z).

From these two identities we conclude that

πβn(τzu)(x) =
∑
k

pβu,σzk(x+ z)φn,σzk(x+ z) =
∑
k

pβu,k(x+ z)φn,k(x+ z) = τzπ
β
n(u)(x),

where we used that σz is bijective, this proves the proposition. �

Remark 4.15. Given ε ∈ (0, 1) there is a C > 1 such that for every n ∈ N, x0 ∈ Gn, and unit
vector x∗ ∈ Rd there is some x1 ∈ Gn and s > 0 such that

|sx∗ − (x1 − x0)| ≤ hn, C−1hεn ≤ |x1 − x0| ≤ Chεn.

Indeed, this follows from the fact that hεnx∗ ∈ [−hεn, hεn]d and that [−hεn, hεn]d ∩ (Gn − x0) is a
hn-net in [−hεn, hεn]d, so there is x1 ∈ [−hεn, hεn]d ∩ (Gn − x0) such that |hεnx∗ − (x1 − x0)| ≤ hn.
Then, the inequalities for |x1−x0| follow from two applications of the triangle inequality and the
fact that ε < 1 and hn ≤ 1/2 for all n ≥ 1.

Proposition 4.16. Let w ∈ Cβb (Rd) be such that w(x) ≥ 0 for every x ∈ Gn and such that
w(x0) = 0 at some x0 ∈ Gn. Then, there is a universal C such that

|∇πβnw(x0)| ≤ C‖w‖Cβhmin{2,β}−1
n , if β ≥ 1,

|(∇2πβnw(x0))−| ≤ C‖w‖Cβh(min{3,β}−2)/2
n , if β ≥ 2.

Here, for a given symmetric matrix D, D− denotes it’s negative part.

Proof. Fix any x ∈ Gn. Thanks to Proposition 4.10 and the fact that |x− x0| ≥ hn we have

|w(x)− w(x0)− (∇πβnw(x0), x− x0)| ≤ C‖w‖Cβ |x− x0|min{2,β}.

Since w(x0) = 0, and w(x) ≥ 0 by assumption,

0 ≤ (∇πβnw(x0), x− x0) + C‖w‖Cβ |x− x0|min{2,β}.

It is easy to see there is some x1 ∈ Gn such that |x0 − x1| = hn and

(∇πβnw(x0), x1 − x0) = −|∇πβnw(x0)|`∞ |x1 − x0|,
and therefore,

(∇πβnw(x0), x1 − x0) ≤ −C−1
d |∇π

β
nw(x0)||x1 − x0|.

Combining these inequalities and recalling Theorem 4.13 it follows that

|∇πβnw(x0)| ≤ C‖w‖Cβhmin{2,β}−1
n .

This proves the estimate for the gradient when β ≥ 1. Now assume β ≥ 2, the beginning of the
argument in this case goes along similar lines. For any x ∈ Gn we have that

|w(x)− w(x0)− (∇πβnw(x0), x− x0)− 1
2(∇2πβnw(x0)(x− x0), x− x0)| ≤ C‖w‖Cβ |x− x0|min{3,β},

where we have once again used Theorem 4.13. Thus, since w(x0) = 0 and w(x) ≥ 0 for x ∈ Gn,

(∇πβnw(x0), x− x0) + 1
2(∇2πβnw(x0)(x− x0), x− x0) + C‖w‖Cβ |x− x0|min{3,β} ≥ 0.

Now, since we are on a lattice, it is obvious that for any x ∈ Gn we have that x′ := 2x0−x ∈ Gn.
In this case we can add up the inequalities for x and x′, and conclude that

(∇πβnw(x0), x− x0) + 1
2(∇2πβnw(x0)(x− x0), x− x0)

+ (∇πβnw(x0), x′ − x0) + 1
2(∇2πβnw(x0)(x′ − x0), x′ − x0) + 2C‖w‖Cβ |x− x0|min{3,β} ≥ 0.
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Since x′ − x0 = −(x− x0), we conclude that

(∇2πβnw(x0)(x− x0), x− x0) + 2C‖w‖Cβ |x− x0|min{3,β} ≥ 0, ∀ x ∈ Gn.

Let x∗ ∈ Rd be a unit vector such that

−(∇2πβnw(x0)x∗, x∗) = |(∇2πβnw(x0))−|

According to Remark 4.15, there is x1 ∈ Gn and s > 0 such that

|sx∗ − (x1 − x0)| ≤ hn, C−1hεn ≤ |x1 − x0| ≤ Chεn.

For this x1 we have

|(∇2πβnw(x0))−|s2 = −(∇2πβnw(x0)x∗, x∗)s
2

≤ −(∇2πβnw(x0)(x1 − x0), x1 − x0) + C‖w‖Cβ |sx∗ − (x1 − x0)|.

This, together with the previous step, shows that

C−2|(∇2πβnw(x0))−|(hεn)2 ≤ 2C‖w‖Cβhmin{3,β}ε
n + C‖w‖Cβhn,

again having used Theorem 4.13. Simplifying, this becomes

|(∇2πβnw(x0))−| ≤ C‖w‖Cβ (h(min{3,β}−2)ε
n + h1−ε

n ).

Choosing ε = 1/2, and noting min{3, β} − 2) ≤ 1, we conclude that

|(∇2πβnw(x0))−| ≤ C‖w‖Cβh(min{3,β}−2)/2
n .

�

We fix an auxiliary function η0 : [0,∞)→ R+, with η0 ∈ C∞(R+), and

0 ≤ η0 ≤ 1, η′0(t) ≥ 0 for all t, η0(t) = t for t ≤ 1/2, η0(t) = 1 for t ≥ 1. (4.3)

The function η0, as well as the following two estimates, will be useful in the next section. Essen-
tially, η0(t) should be thought of as a smooth replacement for min{1, t}.

Lemma 4.17. Let 1 ≤ β < β0 < 3, and consider w ∈ Cβ0

b (Rd) and x0 ∈ Gn such that

w ≥ 0 in Gn and w(x0) = 0.

Then, there is a function Rβ0,n,w,x0 such that R(x0) = 0, and

πβnw(x) +Rβ0,n,w,x0(x) ≥ 0, ∀ x ∈ Rd,
‖Rβ0,n,w,x0‖Cβ(Rd) ≤ Chγn‖w‖Cβ0 (Rd),

for some constant γ = γ(β, β0) ∈ (0, 1).

Remark 4.18. For β ∈ (0, 1), it is straightforward that w ≥ 0 in Gn guarantees that πβnw ≥ 0
everywhere, that is, the Whitney extension for β ∈ (0, 1) is order preserving. Accordingly, Lemma
4.17 is only needed for β > 1.

Proof. We consider the cases 1 ≤ β < 2 and β ≥ 2 separately. First suppose β ∈ [1, 2). Let φ0(t)
be a smooth function such that 0 ≤ φ0(t) ≤ 1 for all t, φ0(t) = 1 for t ≤ 1/4 and φ0(t) = 0 for
t ≥ 1. Then set

w̃(x) = πβnw(x)− (∇πβnw(x0), x− x0)φ0(x− x0).
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For each x ∈ Rd, let x̂ denote a point in Gn such that |x − x̂| = dist(x,Gn) ≤ hn. Then, since
w(x̂) ≥ 0 for any x̂ (from the assumption), we have

w̃(x) = w̃(x̂) + (w̃(x)− w̃(x̂))

≥ −(∇πβnw(x0), x− x0)φ0(x− x0)− C‖w̃‖Cβ0 |x̂− x|

≥ −(∇πβnw(x0), x− x0)φ0(x− x0)− C‖w̃‖Cβ0hn.

By Proposition 4.16, we have |∇πβnw(x0)| ≤ C‖w‖Cβ0hn when β0 > 1, therefore,

w̃(x) ≥ −C‖w‖Cβ0hn, ∀ x ∈ Rd,

where we have used Theorem 4.13 to bound ‖πβnw‖Cβ0 . On the other hand, since β0 > 1 and

∇w̃(x0) = 0, we have

w̃(x) ≥ −‖w̃‖Cβ0 |x− x0|β0 ,

≥ −C‖w‖Cβ0 |x− x0|β0 ∀ x ∈ Rd,

Now, we take η0 as in (4.3) and define the function

R̃(x) := 2C‖w‖Cβ0hnη0

(
|x− x0|β0

hn

)
.

If |x− x0|β0 ≥ hn/2, then

w̃(x) + R̃(x) = w̃(x) + C‖w‖Cβ0hn ≥ 0.

If on the contrary, |x− x0|β0 ≤ hn/2, then

w̃(x) + R̃(x) = w̃(x) + C‖w‖Cβ0 |x− x0|β0 ≥ 0.

We conclude that

w̃(x) + R̃(x) ≥ 0, ∀ x ∈ Rd.

On the other hand, an elementary computation (see the Appendix) shows that

‖R̃‖Cβ ≤ Chγn‖w‖Cβ0 .

Finally, let

Rβ0,n,w,x0(x) := R̃(x)− (∇πβn(x0), x− x0)φ0(x− x0).

We conclude that ‖Rβ0,n,w,x0‖Cβ ≤ Ch
γ
n‖w‖Cβ0 and

πβnw(x) +Rβ0,n,w,x0(x) ≥ 0, ∀ x ∈ Rd.

This proves the Proposition when β ∈ [1, 2). The argument for β ≥ 2 is similar, we only highlight
the main differences. This time, we subtract not just the first order part of w near x0, but also
the second order part, namely we consider the function

˜̃w := πβnw(x)− (∇πβn(x0), x− x0)φ0(x− x0)− 1
2((∇2πβn(x0))−(x− x0), x− x0)φ0(x− x0).

Then, one applies again Proposition 4.16 and use the regularity of w to obtain (in analogy to the
previous case)

˜̃w(x) ≥ −C‖w‖Cβ0 max{hn, |x− x0|β0}

The respective function ˜̃R is defined exactly as R̃ and one argues as in the previous case. �
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Remark 4.19. The argument in the proof provides -after small modifications- a closely related

result: if instead of w ∈ Cβb (Rd) we assume that w ∈ C0
b (Rd) and that for some M > 0 and

β0 > β we have

|w(x)| ≤M |x− x0|β0 , ∀ x ∈ Rd,

then there is as before a function R̂β0,n,w,x0 such that R̂β0,n,w,x0(x0) = 0 and πβnw(x)+Rβ0,n,w,x0(x) ≥
0 for all x, but this time the Cβ estimate for R̂β0,n,w,x0 is

‖R̂β0,n,w,x0‖Cβ ≤ Chγn(‖w‖L∞ +M).

The following proposition will be useful later in the proof of Proposition 5.8.

Proposition 4.20. Let 1 ≤ β < β0 < 3 or β ∈ (0, 1) and β0 = β. Fix f ∈ C∞c (Rd), and let η0

be as in (4.3). Let x0 ∈ Gn and w(x) = f(x− x0)η0(|x− x0|β0), then

πβn(w, x) ≤ C‖f‖L∞η0(|x− x0|β0), ∀ x ∈ Rd, if β ∈ (0, 1),

πβn(w, x) ≤ C‖f‖L∞η0(|x− x0|β0) + R̂β0,n,w,x0(x), ∀ x ∈ Rd, if β ∈ [1, 2],

for some function R̂β0,n,w,x0 such that R̂β0,n,w,x0(x0) = 0 and

‖R̂β0,n,w,x0‖Cβ ≤ C‖f‖L∞hγn,
where γ is as in Lemma 4.17.

Proof. Define the function w̃(x) := (‖f‖L∞ − f(x− x0))η0(|x− x0|β0). Then w̃(x0) = 0 and

|w̃(x)| ≤ 2‖f‖L∞η0(|x− x0|β0), ∀ x ∈ Rd,
while, since η0 ≥ 0, we also have w̃(x) ≥ 0 for every x ∈ Gn. If β ∈ [1, 2], using Lemma 4.17 and

the function R̂β0,n,w,x0 from Remark 4.19, we have

πβn(w̃, x) + R̂β0,n,w,x0(x) ≥ 0, ∀ x,
This inequality, after some rearranging, yields (for β ∈ [1, 2])

πβn(w, x) ≤ ‖f‖L∞πβn(η0(| · −x0|β0), x) + R̂β0,n,w,x0(x), ∀ x ∈ Rd.
Since we also have ‖w̃‖L∞ ≤ C‖f‖L∞ , we have again by Remark 4.19

‖R̂β0,n,w,x0‖Cβ ≤ C‖f‖L∞hγn,
and the Proposition is proved in this case. For β ∈ (0, 1) we argue along similar lines, using
Remark 4.18 instead of Lemma 4.17.

�

4.5. Convergence of the projection operators.

Lemma 4.21. Let 0 < β < β0 < 3, there is a constant C such that if u ∈ Cβ0

b (Rd), then

‖πβnu− u‖Cβ ≤ Chγn‖u‖Cβ0 .

Here, γ = γ(β0, β) ∈ (0, 1).

Proof. For notational simplicity let us write f(x) = πβnu(x) throughout the proof.
Since u = f throughout Gn, for an arbitrary x ∈ Gn we have (with x̂ denoting a point in Gn

such that dist(x,Gn) = |x− x̂|), with α := min{1, β0}
|u(x)− f(x)| ≤ |f(x)− f(x̂)|+ |u(x̂)− u(x)|

≤ |x− x̂|α[f ]Cα + |x− x̂|α[u]Cα

≤ C‖u‖Cβ0h
α
n ≤ C‖u‖Cβ0h

α
n,
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where we made use of Theorem 4.13 to obtain [f ]Cα ≤ C‖u‖Cβ . This shows that ‖u− f‖L∞ goes
to zero at some rate determined by β0 and the size of ‖u‖Cβ0 . To prove the lemma we need to
also bound the Hölder seminorm of u− f and its derivatives, according to β0.

The case β, β0 ∈ [0, 1). Fix x1, x2 ∈ Rd. First, suppose that |x1 − x2| ≤ max{|x1 − x̂1|, |x2 −
x̂2|}, then

|f(x1)− u(x1)− (f(x2)− u(x2))| ≤ [f − u]Cβ0 |x1 − x2|β0 ≤ C‖u‖Cβ0 |x1 − x2|β0 .

In this case, and since 0 ≤ β < β0 < 1, we have that |x1 − x2|β0−β ≤ max{|x1 − x̂1|β0−β, |x2 −
x̂2|β0−β} ≤ hβ0−β

n . Then, using Theorem 4.13

|f(x1)− u(x1)− (f(x2)− u(x2))| ≤ [f − u]Cβ |x1 − x2|β ≤ C‖u‖Cβ0h
β0−β
n |x1 − x2|β.

Next, suppose that |x1 − x2| > max{|x1 − x̂1|, |x2 − x̂2|}. In this case

|f(x1)− u(x1)− (f(x2)− u(x2))| ≤ ‖f‖Cβ0 |x1 − x̂1|β0 + ‖u‖Cβ0 |x2 − x̂2|β0

≤ C‖u‖Cβ0h
β0−β
n |x1 − x2|β,

where once again Theorem 4.13 was used. Combining these two estimates, we conclude that

[f − u]Cβ = sup
x1 6=x2

|f(x1)− u(x1)− (f(x2)− u(x2))|
|x1 − x2|β

≤ C‖u‖Cβ0h
β0−β
n .

Then, using that hn ≤ 1 for all n ≥ 1, we have

‖f − u‖Cβ ≤ Chγn‖u‖Cβ0 .

The case β, β0 ∈ [1, 2). In this case we trivially have the same estimates from the previous
case, and only need the bounds for first derivative. This is done as follows, first

|∇f(x)−∇u(x)| ≤ |∇f(x)−∇f(x̂)|+ |∇f(x̂)−∇u(x̂)|+ |∇u(x)−∇u(x̂)|.
Then, using Theorem 4.13, we have

|∇f(x)−∇u(x)| ≤ [∇f ]Cβ0−1hβ0−1
n + |∇f(x̂)−∇u(x̂)|+ [∇u]Cβ0−1hβ0−1

n

≤ C‖u‖Cβ0h
β0−1
n + |∇f(x̂)−∇u(x̂)|.

Recall that ∇f(x̂) = (∇n)1u(x̂), and use Proposition 4.10 to conclude that

|∇f(x)−∇u(x)| ≤ C‖u‖Cβ0h
β0−1
n + C‖u‖Cβ0h

β0−1
n .

The Hölder seminorm [∇f −∇u]Cβ is bounded with the same argument used to bound [f −u]Cβ
in the previous case, we omit the details.

The case β = 2, β0 ∈ (2, 3). Right as before, we note that

|D2f(x)−D2u(x)| ≤ |D2f(x)−D2f(x̂)|+ |D2f(x̂)−D2u(x̂)|+ |D2u(x)−D2u(x̂)|.
Then, applying Theorem 4.13 and Proposition 4.10 as in the previous case, we have

|D2f(x)−D2u(x)| ≤ [D2f ]Cβ0−2hβ0−2
n + |D2f(x̂)−D2u(x̂)|+ [D2u]Cβ0−2hβ0−2

n

≤ 2C‖u‖Cβ0h
β0−2
n + |∇f(x̂)−∇u(x̂)|

≤ 3C‖u‖Cβ0h
β0−2
n .

For the Hölder seminorm, we repeat the argument used in the case β ∈ (0, 1), again we leave the
details to the reader. �

Remark 4.22. If u ∈ C0
b (Rd), then the same argument from Lemma 4.21 can be used to show

lim
n→∞

‖u− π0
n(u)‖L∞(Rd) = 0,

the rate of convergence being determined by the modulus of continuity of u.
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5. Analysis of I(u, x) via the finite dimensional approximations

In this section we introduce a sequence of operators In which approximate I. The operators
In behave like operators in a finite dimensional vector space in the sense that they arise from a
composition between linear maps with a Lipschitz map from a finite dimensional space onto itself.
This allows us to prove a min-max formula for In(u, x) at least when x ∈ Gn by using Clarke’s
idea of a generalized gradient [18]. More precisely, we use the fact that In factorizes via a map
between finite dimensional vector spaces (which is what the spaces C∗(Gn) were introduced for),

where the generalized gradient can be used, and then lift this to corresponding maps from Cβb (Rd)
to C0

b (Rd) using the Whitney extension. The majority of the section is concerned with deriving
estimates and regularity properties for the linear operators arising in the min-max formula for
In, and ultimately concluding such linear operators are pre-compact, which leads to a min-max
formula for the original operator.

5.1. The operators In and their min-max representation. We are going to approximate

the operator I(·, x) via “finite dimensional approximations”, this referring to maps In : Cβb → C0
b ,

which factorize through a finite dimensional space (see (5.3) below).
We introduce a modification of the projection operator π0

n defined in (4.2). First, we define

Prn : C(Gn)→ C∗(Gn), Prn(u)(x) := u(x)χ[−2n,2n]d(x).

That is, given u ∈ C(Gn), we define Prn(u) as the function obtained by restricting u to Gn ∩
[−2n, 2n]d and then extending it to the rest of Gn by zero. Then, we define the modified Whitney
extension,

Êβn := Eβn ◦ Prn,

and the modified projection operator

π̂βn := Êβn ◦ Tn.

These are, respectively, bounded linear maps from C(Gn) to Cβb (Rd) and from C0
b (Rd) to Cβb (Rd).

Now we are ready to introduce the finite dimensional approximations to the operator I, define

In = π̂0
n ◦ I ◦ π̂βn , In : Cβb (Rd)→ C0

b (Rd). (5.1)

That is, to compute In(u, x), we first compute the modified projection π̂βnu, and compute I(π̂βnu),
to which we later apply the modified projection π̂0

n. In particular, In only depends on the values
of u on Gn ∩ [−2n, 2n]d. Associated to this, we introduce a map, in, defined as follows

in : C∗(Gn)→ C∗(Gn), in = Prn ◦ Tn ◦ I ◦ Eβn . (5.2)

From the definition of In, we have In = Eβn ◦ Prn ◦ Tn ◦ I ◦ Eβn ◦ Prn ◦ Tn, thus we see In and in
are themselves related by

In = E0
n ◦ in ◦ Prn ◦ Tn. (5.3)

The situation for both In and in is represented in the following two diagrams,

Cβb (Rd) C0
b (Rd)

Cβb (Rd) C0
b (Rd)

In

π̂βn

I

π̂0
n

C∗(Gn) C∗(Gn)

Cβb (Rd) C0
b (Rd)

in

Eβn

I

Prn◦Tn

Now, the space C∗(Gn) is finite dimensional (Remark 4.2), and the map in : C∗(Gn)→ C∗(Gn) is
Lipschitz continuous. Therefore, tools available for Lipschitz functions in the finite dimensional
setting can be applied to in and then related to In via (5.3).
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We recall the generalized derivative of in in the sense of Clarke [18, Section 2.6].

Definition 5.1. Let V be a Banach space, and T : V → V a Lipschitz continuous function. We
define the set of generalized derivatives of T , by

DT := c.h.{L : V → V | L = lim
k
Lk where Lk = DT (xk), T is differentiable at xk ∀ k}.

By Rademacher’s theorem, the set DT is not empty when V is finite dimensional. Applying
this to in : C∗(Gn) → C∗(Gn), we have, first, that Din is non-empty, and secondly that DIn
is non-empty as well, this is proved in Lemma 5.3, where we describe the relationship between
Din to DIn. The following Lemma is the mean value theorem for nonsmooth Lipschitz functions
between finite dimensional spaces (note the similarity with Theorem 2.5).

Lemma 5.2. Assume that I : Cβb (Rd)→ C0
b (Rd) is Lipschitz. For any u, v ∈ C∗(Gn), there is a

L ∈ Din such that

in(u, x)− in(v, x) = L(u− v, x).

Proof. We refer the reader to [18, Proposition 2.6.5] for a proof of the lemma. �

The second lemma is basically the chain rule.

Lemma 5.3. Assume that I : Cβb (Rd) → C0
b (Rd) is Lipschitz. The set DIn is non-empty, and

for any L ∈ DIn there is a L̃ ∈ Din such that

L = E0
n ◦ L̃ ◦ Tn,

conversely, any L defined in this way for some L̃ ∈ Din belongs to DIn.

Proof. Note that In is differentiable at a point u if and only if in is differentiable at ũ = Tnu, a
fact which follows applying the chain rule to the identities (5.2) and (5.3). Furthermore, at such
u’s we have

DIn(u) = E∗n ◦Din(ũ) ◦ Tn.
If uk is a sequence along which In is differentiable, and Lk := DIn(uk) converges to some L, then

the sequence L̃k := Din(ũk) has a limit L̃, and L = E∗n ◦ L̃ ◦ Tn, taking the convex hull and by
the linearity of E∗n and Tn, the lemma follows. �

The following remark will not be of any relevance until the proof of Theorem 1.11 at the end
of this section, but we include it here to illustrate how Lemmas 5.2 and 5.3 immediately yield a
min-max formula for In(u, x) (for x ∈ Gn).

Remark 5.4. Fix n and let x ∈ Gn. Then for any u ∈ Cβb (Rd) we have

In(u, x) ≤ max
L∈DIn

{In(v, x) + L(u− v, x)}, ∀ x ∈ Gn, u, v ∈ Cβb (Rd). (5.4)

Indeed, according to Lemma 5.2 given u and v says there is some L̃ ∈ Din such that

in(u)− in(v) = L̃(u− v).

In this case, we have E0
n(in(u))−E0

n(in(v)) = E0
n(L̃(u− v)), and thus setting L := E0

n ◦ L̃ ◦ Tn ∈
DIn, we have

In(u) = In(v) + L(u− v),

and (5.4) immediately follows.

Next we make an elementary observation regarding the nature of the operators L ∈ DIn. This
observation is merely a consequence of the factorization of In through the space C(Gn).
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Remark 5.5. For each L ∈ DIn there is a function K = KL, K : Gn ×Gn → R such that

Lu(x) =
∑
y∈Gn

K(x, y)u(x+ y), ∀ u ∈ Cβb (Rd). (5.5)

Indeed, simply let us use the basis functions {ey}y∈Gn ⊂ C(Gn) given by

ey(x) =

{
1 if x = y,
0 if x 6= y.

Observe that for any u ∈ Cβb (Rd) the function Tnu has finite support, and in particular Tnu =∑
y∈Gn u(y)ey as the sum on the right has at most a finite number of non-zero terms. Thanks to

Lemma 5.3, there is some L̃ ∈ Din such that L = E0
n ◦ L̃ ◦ Tn and therefore,

Lu(x) =
∑
y∈Gn

(L̃ey)(x)u(y) =
∑

y∈Gn−x
(L̃ex+y)(x)u(x+ y), ∀ x ∈ Gn.

Then, defining KL(x, y) = (L̃ex+y)(x) for x, y ∈ Gn the identity (5.5) follows.

For the rest of this section we analyze the operators In and the sets DIn and obtain in the
limit a min-max formula for In. We shall focus on operators satisfying Assumption 1.4. As we
see below this property is inherited –to some extent– by the operators In, and by any operator
L ∈ DIn, this fact is covered in the next two propositions. In the subsections that follow, we will
use the spatial regularity afforded by Assumption 1.4 to show that the operators in the family
DIn have coefficients enjoying some regularity, which in the limit yields regular coefficients.

Proposition 5.6. Let I be Lipschitz and satisfy Assumption 1.4. Let x1, x2 ∈ Gn and h = x1−x2,

and r ≥ 24−n. Then, for any u, v ∈ Cβb (Rd) we have

|In(v + τ−hu, x1)− In(v, x1)− (In(v + u, x2)− In(v, x2)) |

≤ ω(|h|)C(2r)
(
‖u‖Cβ(B4r(x2)) + ‖u‖L∞(CBr(x2))

)
.

where ω(·) is the modulus of continuity and C(·) the function given by Assumption 1.4.

Proof. Observe that

In(v + τ−hu, x1)− In(v, x1) = I(πβnv + πβn(τ−hu), x1)− In(πβn , x1),

and recall that Proposition 4.14 says that πβn(τ−hu) = τ−hπ
β
n(u) when Gn + h = Gn.

Therefore, applying the bound in Assumption 1.4 with 3
2r,

|In(v + τ−hu, x1)− In(v, x1)− (In(v + u, x2)− In(v, x2)) |

= |I(πβnv + τ−h(πβnu), x1)− In(πβn , x1)−
(
I(πβnv + πβnu, x2)− I(πβnv, x2)

)
|

≤ ω(|x1 − x2|)C(3r/2)
(
‖πβnu‖Cβ(B3r(x)) + ‖πβnu‖L∞(CB3r/2(x))

)
.

Now, provided r ≥ 24−n, we have

‖πβnu‖Cβ(B3r(x)) ≤ C‖u‖Cβ(B4r(x)),

‖πβnu‖L∞(CB3r/2(x)) ≤ C‖u‖L∞(CBr(x)),

the proposition follows.
�
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Proposition 5.7. Let I be Lipschitz and satisfy Assumption 1.4. Given L ∈ DIn, x1, x2 ∈ Gn,

r ≥ 24−n and u ∈ Cβb (Rd), we have the inequality

|L(τ−hu, x1)− L(u, x2)| ≤ ω(|h|)C(2r)
(
‖u‖Cβ(B4r(x2)) + ‖u‖L∞(CBr(x2))

)
. (5.6)

Here, h = x1 − x2 and ω(·) and C(·) are given by Assumption 1.4.

Proof. Consider any v ∈ Cβb (Rd) such that In is differentiable at v with derivative L. Then,

L(τ−hu, x1) = lim
s→0

1

s
(In(v + sτ−hu, x1)− In(v, x1)) ,

L(u, x2) = lim
s→0

1

s
(In(v + su, x2)− In(v, x2)) .

By Proposition 5.6, we have

|L(τ−hu, x1)− L(u, x2)|

= lim sup
s→0

1

s
|In(v + sτ−hu, x1)− In(v, x1)− (In(v + su, x2)− In(v, x2))| ,

≤ ω(|h|)C(2r) lim sup
s→0

1

s

(
‖su‖Cβ(B2r(x)) + ‖su‖L∞(CBr(x))

)
,

= ω(|h|)C(2r)
(
‖u‖Cβ(B2r(x)) + ‖u‖L∞(CBr(x))

)
.

This proves the desired inequality for those L ∈ DIn which happen to be the derivative of In at a
point of differentiability. This property is clearly preserved under limits and convex combinations,
so it follows any L ∈ DIn has the desired property. �

The following proposition is directly related to Proposition 4.20.

Proposition 5.8. Assume that I is Lipschitz and satisfies Assumption 1.1. For f ∈ C∞c (Rd) let
w(x) = f(x− x0)η0(|x− x0|β) with η0 as in (4.3), then

I(πβnu+ πβnw, x)− I(πβnu, x) ≤ C‖f‖L∞ .

If instead we have w(x) = f(x− x0)η0(|x− x0|β0) with f non-negative and some β0 > β, then

I(πβnu+ πβnw, x)− I(πβnu, x) ≥ −C‖f‖L∞hγn,
for some constant γ = γ(β0, β) ∈ (0, 1).

Proof. We apply Proposition 4.20, and we have with R̂β,n,w,x0 from the same proposition, we
have

πβnw(x) ≤ ŵ(x) := C‖f‖L∞
(
η0(|x− x0|β) + R̂β,n,w,x0(x)

)
, ∀ x ∈ Rd,

with equality holding for x = x0. It follows that πβnu + πβnw is touched from above at x0 by

πβnu+ ŵ. Then, since I(·, x) has the GCP,

I(πβnu+ πβnw, x) ≤ I(πβnu+ ŵ, x)

This means that

I(πβnu+ πβnw, x0)− I(πβnu, x0) ≤ I(πβnu+ ŵ, x0)− I(πβnu, x0) ≤ C‖ŵ‖Cβ .

Since ‖ŵ‖Cβ = ‖f‖L∞‖η0(| · −x0|β) + R̂β,n,w,x0‖Cβ ≤ C‖f‖L∞ the first inequality is proved. For
the second inequality, we apply Remark 4.19 directly, and use that I has the GCP to conclude
that

I(πβnu+ πβnw + R̂β0,n,w,x0 , x0) ≥ I(πβnu, x0).
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Then, using the Lipschitz property of I we conclude that

I(πβnu+ πβnw, x0)− I(πβnu, x0) ≥ −C‖R̂β0,n,w,x0‖Cβ ≥ −Chγn‖f‖L∞ ,

where we used that |w(x)| ≤ C‖f‖L∞ min{1, |x − x0|β0} and Remark 4.19 to obtain the last
inequality.

�

Proposition 5.9. Let I be Lipschitz and satisfy Assumption 1.3. Let R ≥ 1 and w ∈ Cβb (Rd)
with w ≡ 0 in B3R(x0), then for any x ∈ ∩BR(x0) we have

|I(πβnu+ πβnw, x)− I(πβnu, x)| ≤ ρ(R)‖w‖L∞(Rd),

where ρ is the rate coming from Assumption 1.3.

Proof. If w ≡ 0 in B3R(x0), then πβn ≡ 0 in B2R(x0). In other words, πβnu and πβnu + πβnw are
identically equal in B2R(x0). Therefore, Assumption 1.3 says that

|I(πβnu+ πβnw, x)− I(πβnu, x)| ≤ ρ(R)‖πβnw‖L∞(Rd), ∀x ∈ BR(x0).

By Proposition 4.20, ‖πβnw‖L∞(Rd) ≤ ‖w‖L∞(Rd), the proposition is proved.
�

5.2. Properties of DIn. For each L ∈ DIn and x ∈ Gn we define a Borel measure µL(x, dy)
(which is possibly signed) as follows

µL(x, dy) :=
∑

y∈Gn\{0}

KL(x, y)δx+y. (5.7)

where KL(x, y) is as in Remark 5.5. From its definition, it is immediate that given φ ∈ Cβ and
x ∈ Gn then

L(φ, x) =

∫
Rd
φ(x+ y) dµL(x, dy).

Proposition 5.10. Assume that I is Lipschitz and satisfies Assumption 1.1. For each L ∈ DIn
and x ∈ Gn, and η0(t) the function in (4.3),

sup
n

sup
x∈Gn

∫
Rd
f(y)η0(|y|β) µL(x, dy) ≤ C‖f‖L∞ , ∀ f ∈ C∞c (Rd).

Proof. Fix x0 ∈ Gn. Let us assume first that β 6= 1. Let w(x) = f(x− x0)η0(|x− x0|β), then

L(w, x0) =

∫
Rd
φ(y)η0(|y|β) µL(x0, dy).

Therefore it suffices to show there is a universal constant such that

L(w, x0) ≤ C‖f‖L∞ , ∀ L ∈ DIn.

Let us prove this when L arises as the derivative of In at some v ∈ Cβb , namely, that

L(φ, x0) = lim
s→0

(In(v + sφ, x0)− In(v, x0))/s.

In this case, we can apply Proposition 5.8 to the expression on the right and conclude that

lim
s→0

(In(v + sw, x0)− In(v, x0))/s ≤ C‖f‖L∞ ,

where we used that when β 6= 1 the function η0(| · −x0|β) belongs to Cβb (Rd) and the norm

‖η0(| · −x0|β)‖Cβ is bounded in terms of β, d, and the function η0. This the desired estimate for



32 N. Guillen, R. Schwab

such L. Since this property is clearly preserved under limits and convex combinations, it follows
that the property holds for all elements of DIn.

The case β = 1 proceeds similarly, except one first fixes ε ∈ (0, 1) and considers the function
η0(|x− x0|β+ε) instead. After proceeding as in the previous case, we obtain the estimate∫

Rd
f(y)η0(|y|β+ε) µL(x0, dy) ≤ C‖f‖L∞ ,

for every L ∈ DIn and x0 ∈ Gn. The constant C is independent of ε ∈ (0, 1), since ‖η0(|·−x0|β)‖C1

is independent of ε when ε > 0. Letting ε↘ 0 for the integral on the left (and using the special
form of µL(x0, dy)) one obtains the estimate in the case β = 1.

�

Proposition 5.11. Assume that I is Lipschitz and satisfies Assumption 1.1. Let f ∈ C∞c (Rd)
be a non-negative function. There is a constant C = C(I, d, β, β0) such that given β0 > β then
for each L ∈ DIn and x ∈ Gn,

inf
n

inf
x∈Gn

∫
Rd
f(y)η0(|y|β0) µL(x, dy) ≥ −Chγn‖f‖L∞ .

As before, η0 is the function in (4.3), and γ = γ(β, β0).

Proof. As in the proof of the previous proposition, we note that if x0 ∈ Gn, w(x) := f(x −
x0)η0(|x− x0|β0), and L ∈ DIn, then

L(w, x0) =

∫
Rd
f(y)η0(|y|β) µL(x0, dy).

As in the previous Proposition, it suffices to show that L(w, x0) ≥ −C‖f‖L∞hγn, and from DIn’s
definition, it suffices to show this for those L′s in DIn which are the derivative of In at some

u ∈ Cβb (Rd). In this case, given that f ≥ 0, we may apply the second part of Proposition 5.8 to
obtain

L(w, x0) = lim
s→0

I(πβnu+ πβn(sw), x0)− I(πβnu, x0)

s
≥ lim

s→0
−C‖sf‖L

∞hγn
s

= −Chγn‖f‖L∞ ,

and the proposition is proved. �

Let us recall the function

Pφ,η,u,x(·) = u(x) + φ(· − x)(∇u(x), · − x) + 1
2η(· − x)(D2u(x)(· − x), (· − x)).

In this section we introduce a variation on this function. This modification takes into account
the geometry of the grid Gn as well as the regularity exponent β, and will be used in a way
analogous to the previous section.

P
(n)
φ,η,u,x(·) =


u(x) if β ∈ (0, 1),
u(x) + φ(· − x)((∇n)1u(x), · − x) if β ∈ [1, 2),
u(x) + φ(· − x)((∇n)1u(x), · − x) + 1

2η(· − x)((∇n)2u(x)(· − x), · − x) if β ∈ [2, 3).

Associated with this, we introduce functions in Gn taking (respectively) scalar, vector, and matrix
values.

First, some notation. To functions η, φ ∈ S we associate the following family of functions

φi(y) = φ(y)yi, i = 1, . . . , d, ηij(y) = η(y)yiyj , i, j = 1, . . . , d.
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Then, for L ∈ DIn and η, φ ∈ S we define a symmetric matrix AL,η, a vector BL,φ, and a
scalar CL. These are functions in Gn defined by the formulas,

(AL,η(x))ij = L(τ−xηij , x), i, j = 1, . . . , d, (5.8)

(BL,φ(x))i = L(τ−xφi, x), i = 1, . . . , d, (5.9)

CL(x) = L(1, x).. (5.10)

The functions AL,η, BL,φ, CL, and µL give us a representation for L(u, x) for x ∈ Gn.

Proposition 5.12. Assume that I is Lipschitz. Let L ∈ DIn, then for β ∈ [2, 3) and u ∈ Cβb (Rd)
we may write it as

L(u, x) = CL(x)u(x) +BL,φ(x) · (∇n)1u(x) + tr(AL,η(x)(∇n)2u(x))

+

∫
Rd
u(x+ y)− P (n)

φ,η,u,x(x+ y) µL(x, dy).

For β ∈ [1, 2)

L(u, x) = CL(x)u(x) +BL,φ(x) · (∇n)1u(x) +

∫
Rd
u(x+ y)− P (n)

φ,η,u,x(x+ y) µL(x, dy),

and for β ∈ [0, 1)

L(u, x) = CL(x)u(x) +

∫
Rd
u(x+ y)− u(x) µL(x, dy).

Proof. We do the case β ≥ 2 explicitly, as the others are identical. Let us compute L(u, x) by

adding and subtracting L(P
(n)
φ,η,u,x, x),

L(u, x) = L(u− P (n)
φ,η,u,x, x) + L(P

(n)
φ,η,u,x, x).

From Remark 5.5, (5.7), we have that

L(u− P (n)
φ,η,u,x, x) =

∫
Rd
u(x+ y)− P (n)

φ,η,u,x(x+ y) µL(x, dy)

As for the other term, we observe that

L(P
(n)
φ,η,u,x, x) = u(x)L(1, x) +

d∑
i=1

(∇1u)ni (x)L(τ−xφi, x) + 1
2

d∑
i,j=1

(∇n)2
iju(x)L(τ−xηij , x).

Rewriting the terms on the right and gathering the terms, we conclude that

L(P
(n)
φ,η,u,x, x) = CL(x)u(x) + (BL,φ(x), (∇n)1u(x)) + tr(AL,η(x)(∇n)2u(x)).

The remaining cases of β follow from the corresponding definition of P
(n)
φ,η,u in those cases.

�

The next two propositions say that the terms appearing Proposition 5.12 satisfy a uniform
continuity in Gn. The first refers to the measure µL.

Proposition 5.13. Assume I satisfies Assumptions 1.1, 1.3, and 1.4, as stated for Cβb (Rd). Let

L ∈ DIn, x1, x2 ∈ Gn, and r ≥ 24−n. There is a constant C(r) such that for any ζ ∈ Cc(Rd)
such that ζ ≡ 0 in Br,∣∣∣∣∫

CBr
ζ(y) µL(x1, dy)−

∫
CBr

ζ(y) µL(x2, dy)

∣∣∣∣ ≤ C(r)‖ζ‖L∞ω(|x1 − x2|),
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where ω is the modulus from Assumption 1.4. In particular,

‖µL(x1, dy)− µL(x2, dy)‖TV(CBr) ≤ C(r)ω(|x1 − x2|).

On the other hand, if ζ ∈ C0(Rd) is such that ζ ≡ 0 in B3R(0) for some R > 1, then for any
x0 ∈ Gn we have ∫

Rd
ζ(y) µL(x0, dy) ≤ ρ(R)‖ζ‖L∞(Rd),

where ρ(·) is the function from Assumption 1.3.

Proof. From the fact that τ−x1ζ and τ−x2ζ vanish in, respectively, Br(x1) and Br(x2), we have

L(τ−x1ζ, x1)− L(τ−x2ζ, x2) =

∫
Rd
ζ(y) dµ(x1, dy)−

∫
Rd
ζ(y) dµ(x2, dy)

=

∫
CBr

ζ(y) dµ(x1, dy)−
∫
CBr

ζ(y) dµ(x2, dy).

Since ζ ≡ 0 in Br, Proposition 5.7 says that, as long as r ≥ 24−n∣∣∣∣∫
CBr

ζ(y) dµ(x1, dy)−
∫
CBr

ζ(y) dµ(x2, dy)

∣∣∣∣ ≤ ω(|x1 − x2|)C(r)‖ζ‖L∞(CBr).

This proves the first estimate, for the second one, fix ζ and x0 ∈ Gn, and define w(x) = τ−x0ζ,
then

L(w, x0) =

∫
Rd
ζ(y) µL(x0, dy).

Therefore, as before, it suffices for us to bound L(w, x0) for every L ∈ DIn, and from the definition
of DIn it suffices to prove the bound for those L such that L = DIn(v) at some v. In this case,
Proposition 5.9 says that

L(w, x0) = lim
s→0

1

s
(In(v + sw, x0)− In(v, x0)) ≤ ρ(R)‖w‖L∞(Rd) = ρ(R)‖ζ‖L∞(Rd)

�

The following notation will be useful in what follows,

α(r, η) := C(2r)

(
max

1≤i,j≤d
‖ηij‖Cβ(B4r) + max

1≤i,j≤d
‖ηij‖L∞(CBr)

)
,

β(r, φ) := C(2r)

(
max
1≤i≤d

‖φi‖Cβ(B4r) + max
1≤i≤d

‖φi‖L∞(CBr)

)
,

where C(r) is as in Assumption 1.4 (see also Proposition 5.6).

Proposition 5.14. Assume I satisfies Assumptions 1.1, 1.3, and 1.4, as stated for Cβb (Rd). Let
L ∈ DIn, r ≥ 24−n, and x1, x2 ∈ Gn, then

|AL,η(x1)−AL,η(x2)| ≤ α(r, η)ω(|x1 − x2|),
|BL,φ(x1)−BL,φ(x2)| ≤ β(r, φ)ω(|x1 − x2|),
|CL(x1)− CL(x2)| ≤ C(r)ω(|x1 − x2|).
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Proof. Fix x1, x2 ∈ Gn and let h = x2 − x1. Applying Proposition 5.7 to x = x1 and h, with the
functions 1, φi, and ηij , we see that for r ≥ 24−n

|L(τ−x2ηij , x2)− L(τ−x1ηij , x1)| ≤ α(η, r)ω(|x1 − x2|),
|L(τ−x2φi, x2)− L(τ−x1φ, x1)| ≤ β(φ, r)ω(|x1 − x2|),

|L(1, x2)− L(1, x1)| ≤ Cω(|x1 − x2|).

These inequalities respectively amount to the stated estimate for AL,η, BL,φ, and CL.
�

5.3. Properties of DI . Now, we define the set DI , which plays the role the Clarke differential
played for In (we recall that c.h. stands for “convex hull”).

DI := c.h.{L | ∃{Lnk}, nk →∞, Lnk ∈ DInk s.t L(u, ·) = lim
k
Lnk(u, ·) ∀ u}. (5.11)

Remark 5.15. We would like to note a point about notation and definitions, namely why above
we have DI with I as a subscript. This is to avoid confusion (or perhaps, to promote it) by
distinguishing it from the generalized derivative in the sense of Clarke from Definition 5.1. The
objects are closely related, and in fact one would hope that DI = DI, but we are not concerned
with whether this is actually the case as the above definition works for our purposes.

The following is an important Lemma that says –among other things– that DI is non-empty.

Lemma 5.16. Assume I satisfies Assumptions 1.1, 1.3, and 1.4, as stated for Cβb (Rd). Given
a sequence nk → ∞ and operators Lnk with Lnk ∈ DInk for every k, and φ, η ∈ S we have the
following

(1) There is a subsequence n̄k and functions A(x), B(x), and C(x) defined on Rd and taking
values respectively in S(d), Rd, and R, such that if x ∈ Gn for some n then we have the
convergence

ALn̄k ,η(x)→ A(x), BLn̄k ,φ(x)→ B(x), CLn̄k (x)→ C(x).

(2) There is a function µ(x) in Rd, taking values on the space of Lévy measures in Rd, such
that for every r > 0, and every x as before we have the convergence

lim
k→∞

‖µLn̄k(x)− µ(x)‖TV(CBr) = 0.

(3) The functions A,B,C, all have a modulus of continuity Cω(2(·)), while for each r > 0
we have the estimate,

‖µ(x1)− µ(x2)‖TV(CBr) ≤ C(r)ω(2|x1 − x2|). (5.12)

(4) If we define L by

L(u, x) := tr(A(x)D2u(x)) +B(x) · ∇u(x) + C(x)u(x)

+

∫
Rd
u(x+ y)− Pφ,η,u,x(x+ y) µ(x, dy)

Then, L ∈ DI .
(5) Moreover, if β < 2, then we have A(x) ≡ 0. Furthermore, if β < 1 then B(x) ≡ 0 and L

takes the form

L(u, x) = C(x)u(x) +

∫
Rd
u(x+ y)− u(x) µ(x, dy).



36 N. Guillen, R. Schwab

Proof. Let us fixe η and φ. First of all, we invoke Proposition 5.12 to obtain the collection of
ALnk ,η, BLnk ,φ, CLnk , and µLnk . Furthermore, already as a result of Proposition 5.12, we have

item (5) of the lemma.
Step 1. (Extension) We have a sequence of functions defined on varying, monotone increasing

sets Gn. One way to show they converge (along a subsequence) to a function in Rd is by extending
them to all of Rd and check whether the resulting sequences are pre-compact.

With this idea in mind, for each n ∈ N we apply the Whitney extension to ALn,η, BLn,η, CLn,η,

ÂLn,η(x) := E0
n(ALn,η)(x), B̂Ln,φ(x) := E0

n(BLn,φ)(x), ĈLn(x) := E0
n(CLn)(x).

We repeat the same for µLn , resulting in a map µ̂Ln from Rd to the space of Lévy measures,
given by the formula

µ̂Ln(x, dy) =
∞∑
k=1

φn,k(x)µ(xk, dy),

where {φk}k is the partition of unity from Proposition 4.6. The functions ÂLn,η, B̂Ln,φ, and

ĈLn(x) all have modulus of continuity Cω(2(·)), thanks to Proposition 5.14 and the properties of
the Whitney extension operator, see [54, Chapter VI, Theorem 3]. The same proof from reference
[54] can be applied with minor modifications to show that for every r > 0 we have

‖µ̂Ln(x1)− µ̂Ln(x2)‖TV(CBr) ≤ C(r)ω(2|x1 − x2|).

Furthermore, for every x, by Proposition 5.13,

|µ̂Ln(x)|(CBR) ≤ ρ(R),

where ρ(R) → 0 as R → ∞. This shows that for each r > 0, the functions {µ̂Ln |CBr}n are
an equicontinuous family of functions taking values inside the space of measures ν which are
supported in CBr and such that ν(CBR) ≤ ρ(R) for all R ≥ r. This space, equipped with the
total variation distance, is a compact metric space.

Step 2. (Cantor diagonalization) We now use a standard Cantor diagonalization argument
to obtain locally uniform convergence along a subsequence. We construct a family nested se-
quences ñmk in the following recursive manner. First, ñ1

k is a subsequence of nk along which the
functions converge uniformly in B1 to functions A1(x), B1(x), and C1(x)) defined in B1. Next,
suppose that for m ∈ N we have build a nested family of sequences ñ1

k, . . . , ñ
m
k such that the

functions ALñm
k
,η, . . ., etc converge uniformly in Bm(0) to functions Am(x) . . ., etc. In this case,

we choose ñm+1
k to be a subsequence of ñmk along which AL

ñm+1
k

,η, . . . converge uniformly in Bm+1

to functions Am+1(x) . . . and so on.
Having constructed these ñmk , we define the sequence ñk as ñk := nkk. The resulting sequences

converge locally uniformly, respectively, to A(x), B(x), and C(x).
Step 3. (Cantor diagonalization continued)
As noted at the end of Step 1, for every r > 0, the sequence {µ̂Lñk}k is an equicontinuous

family of functions taking values in a compact metric space. Therefore, we can apply the Arzela-
Ascoli type theorem found in [24, p. 202] to obtain a subsequence n̄1

k of ñk and a measure µ1

such that

lim
k→∞

sup
x∈B1

‖µ̂L
n̄1
k

(x)− µ1(x)‖TV(CB1/2) = 0.
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Now, suppose we have repeated this m times: we have n̄mk (a subsequence of n̄m−1
k ), as well as a

measure µm such that

lim
k→∞

sup
x∈Bm

‖µ̂Ln̄m
k

(x)− µm(x)‖TV(CB1/2m ) = 0.

Then, using again the compactness theorem in [24, p. 202] we pick a subsequence n̄m+1
k of n̄mk

and a measure µm+1 such that

lim
k→∞

sup
x∈Bm+1

‖µ̂Ln̄m
k

(x)− µm+1(x)‖TV(CB1/2m+1 ) = 0.

Observe that the measures {µm} are such that µm+1
|CB1/2m

(x) = µm(x) for all x ∈ Bm, which

uniquely defines a direct limit measure µ(x) for each x ∈ Rd \ {0}. Letting n̄k := n̄kk we see that
for every R > 0 and r > 0 we have

lim
k→∞

sup
x∈BR

‖µ̂L
n̂k
k

(x)− µ(x)‖TV(CBr) = 0.

Since n̄k is a subsequence of ñk, we still have convergence of ALn̄k ,η, . . . to A(x), . . .. Moreover,
the continuity estimates in the previous step all pass to the limit to give respective estimates for
A(x), B(x), C(x), and µ(x) in the respective metrics.

Last but not least, we note that while {µLn̄k}k are a sequence of signed measures, their limit
µ will be a measure, which follows at once from Proposition 5.11.

Step 4. (Convergence)
First, note that for fixed u, we have that as n→∞,

u(x+ ·)− P (n)
φ,η,u,x(x+ ·)→ u(x+ ·)− Pφ,η,u,x(x+ ·) in L∞(Rd),

which in particular guarantees that, for every fixed r > 0,

lim
k→∞

∫
CBr

u(x+ y)− P (nk)
φ,η,u,x(x+ y) µLnk (x, dy) =

∫
CBr

u(x+ y)− Pφ,η,u,x(x+ y) µ(x, dy).

Then, by the bound in Proposition 5.10, we conclude that

lim
k→∞

∫
Rd
u(x+ y)− P (nk)

φ,η,u,x(x+ y) µLnk (x, dy) =

∫
Rd
u(x+ y)− Pφ,η,u,x(x+ y) µ(x, dy).

Therefore, and taking into account the convergence of ÂLñk ,η, B̂Lñk ,φ, and ĈLñk , and with L(u, x)

defined as in the statement of the Lemma, x ∈ Gn, and u ∈ Cβb (Rd), we have

lim
k→∞

Lñk(x) = lim
k→∞

{
tr(ÂLñk ,ηD

2u(x)) + B̂Lñk ,φ · ∇u(x) + ĈLñk (x)u(x)
}

+ lim
k→∞

∫
Rd
u(x+ y)− P (ñk)

φ,η,u,x(x+ y) µ̂Lnk (x, dy)

= tr(AD2u(x)) +B · ∇u(x) + C(x)u(x)

+

∫
Rd
u(x+ y)− Pφ,η,u,x(x+ y) µ̂(x, dy),

and we conclude that L ∈ DI .
�

It is to be expected that every L ∈ DI satisfies the GCP, and thus, it has to be an operator of
Lévy type. This is proved in the lemma below, and further, we show that the coefficients in the
operator inherit a modulus of continuity from Assumption 1.4.
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Lemma 5.17. Assume I satisfies Assumptions 1.1, 1.3, and 1.4, as stated for Cβb (Rd). Given
L ∈ DI , and any φ, η ∈ S, the operator L can be represented as

L(u, x) = CL(x)u(x) +BL,φ(x) · ∇u(x) + tr(AL,η(x)D2u(x))

+

∫
Rd
u(x+ y)− Pφ,η,u,x(x+ y) µ(x, dy).

Here, µL(x, dy) is a Lévy measure satisfying the continuity estimate (5.12), and

(AL,η)ij(x) = L(τ−xηij , x),

(BL,φ)i(x) = L(τ−xφi, x),

CL(x) = L(1, x),

all have modulus of continuity Cω(2(·)).

Proof. Fix φ, η ∈ S. Assume first that L is the limit of a sequence Lnk with Lnk ∈ DInk . Then,
by Lemma 5.16 there is a subsequence ñk as well as (matrix, vector, scalar, measure)-valued
functions A,B,C, and µ, all such that

CLñk (x)→ C(x), BLñk ,φk(x)→ B(x), ALñk ,ηk(x)→ A(x), µLñk (x, dy)→ µ(x, dy).

and, as a result, we have

L(u, x) = tr(A(x)D2u(x)) +B(x) · ∇u(x) + C(x)u(x)

+

∫
Rd
u(x+ y)− Pφ,η,u,x(y) µ(x, dy).

The estimate in Proposition 5.10 in the limit as n→∞ implies that∫
Rd
η0(|y|β) µ(x, dy) ≤ C,

for some constant C independent of x and L. Meanwhile, also the n → ∞ limit of the estimate
in Proposition 5.11 implies that µ(x, dy) is a non-negative measure in Rd \ {0}. The positivity of
µ means that the previous estimate is equivalent to∫

Rd
min{1, |y|β} µ(x, dy) ≤ C.

Since Lñk(u, x)→ L(u, x), for every u, we have in particular, for x ∈
⋃
Gk

(ALñk ,η)ij(x) = Lñk(τ−xηij , x)→ L(τ−xηij , x).

From where it follows that (AL,η)ij(x) = L(τ−xηij , x) (and thus for all x, by continuity), the
exact same argument yields that (BL,φ)i(x) = L(τ−xφi, x), and CL(x) = L(1, x), and the lemma
is proved.

�

Let us now simplify things by doing away with the auxiliary functions φ and η. To accomplish
this, we shall make use of the auxiliary functions from Section 3.

φδ(x) = ψδ,1−δ, ηδ(x) = ψδ,δ(x), (5.13)

where we recall the two-parameter of functions ψr,R(x) was defined in (3.2). An important
property of these one-parameter families is the bound

sup
δ∈(0,1)

{‖φδ‖Cβ(B1/2) + ‖φδ‖L∞(Rd) + max
ij
‖ηδxixj‖Cβ(Rd)} <∞. (5.14)
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Corollary 5.18. Assume I satisfies Assumptions 1.1, 1.3, and 1.4, as stated for Cβb (Rd). Then,
any L ∈ DI has the form,

L(u, x) = C(x)u(x) +B(x) · ∇u(x) + tr(A(x)D2u(x))

+

∫
Rd
u(x+ y)− u(x)− χB1(0)(y)∇u(x) · y µ(x, dy).

Moreover, A,B, and C each have modulus of continuity Cω(2(·)), and for every r > 0 and any
x1, x2 ∈ Rd we have

‖µL(x1)− µL(x)‖TV(CBr) ≤ C(r)ω(2|x1 − x2|).

If β < 2, then A ≡ 0, while if β < 1 then B ≡ 0 and the integrand with respect to µ(x, dy) in the
formula above is replaced with u(x+ y)− u(x).

Proof. Take a decreasing sequence δk such that δk → 0, and let us take the functions φδk and
ηδk , as defined in (5.13). Then for each k, L has the representation

L(u, x) = CL(x)u(x) +BL,φδk (x) · ∇u(x) + tr(AL,ηδk (x)D2u(x))

+

∫
Rd
u(x+ y)− Pφδk ,ηδk ,u,x(x+ y) µ(x, dy),

where AL,ηδk , BL,φδk , and CL are as in Lemma 5.17. Now, L satisfies the estimate

|L(τ−x1(ηδk)ij , x1)− L(τ−x2(ηδk)ij , x2)| ≤ α(1, ηδk)ω(2|x1 − x2|)

Thanks to (5.14), it follows that α(1, ηδk) ≤ C for all k. It follows that {AL,ηδk}k has a uniform

modulus of continuity. The same argument yields a modulus of continuity for {BL,φδk}k and for

the function C(x), all given by Cω(2|x1−x2|), with C independent of k and ω being the modulus
from Assumption 1.4. This equicontinuity means these sequences of functions are pre-compact
at least when restricted to any compact subset of Rd, by the Arzela-Ascoli theorem. Therefore,
after a Cantor diagonalization argument we see that along some subsequence mk → ∞ these
functions converge locally uniformly in Rd to functions A(x), B(x), respectively. Of course, the
functions A,B, and C all inherit the modulus of continuity Cω(2(·)). The respective TV-norm
continuity estimate for µL follows by applying Proposition 5.13 and passing to the limit (always
recalling that, DI is the convex hull of such limit points).

With the convergence established, we have

lim
k→∞

(
BL,φδmk

(x) · ∇u(x) + tr(AL,ηδmk
(x)D2u(x))

)
= B(x) · ∇u(x) + tr(A(x)D2u(x)),

and so, for every u we have the formula

L(u, x) = C(x)u(x) +B(x) · ∇u(x) + tr(A(x)D2u(x))

+ lim
k→∞

∫
Rd
u(x+ y)− Pφδk ,ηδk ,u,x(x+ y) µ(x, dy),

It remains to compute the limit of the integral, observe that∫
Rd
ηδk(y)(D2u(x)y, y) µ(x, dy) =

∫
Bδk

ηδk(y)(D2u(x)y, y) µ(x, dy),

which means that∣∣∣∣∫
Rd
ηδk(y)(D2u(x)y, y) µ(x, dy)

∣∣∣∣ ≤ C|D2u(x)|
∫
Bδk

|y|2 dµ(x, dy).
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Therefore,

lim
k→0

∫
Rd
ηδk(y)(D2u(x)y, y) µ(x, dy) = 0.

On the other hand, for every y we have

lim
k→∞

(
u(x+ y)− Pφδk ,ηδk ,u,x(y)

)
= u(x+ y)− u(x)− χB1(y)∇u(x) · y,

and the limit is monotone. Therefore, by monotone convergence we conclude that

lim
k→∞

∫
Rd
u(x+ y)− Pφδk ,ηδk ,u,x(y) µ(x, dy) =

∫
Rd
u(x+ y)− u(x)− χB1(y)∇u(x) · y µ(x, dy).

and with this the Corollary is proved. �

5.4. Limits of In.

Lemma 5.19. Assume that I : Cβb (Rd)→ C0
b (Rd) is Lipschitz. Let K > 0 and 0 < β < β0 < 3.

If u ∈ Cβ0

b (Rd) is supported in BK , and 2n−2 ≥ K, then

‖Inu− Iu‖L∞(BK∩Gn) ≤ C2−nγ‖u‖Cβ0 (Rd),

for a universal constant C and γ = γ(β0, β) ∈ (0, 1). Furthermore, we have

lim
n→∞

‖I(u)− In(u)‖L∞(BK) = 0.

Proof. Let u be compactly supported in BK , and be such that ‖u‖Cβ0 ≤ M . First, note that
since 2n−2 ≥ K, then we have

π̂βnu = πβnu,

thus, In(u) = π̂0
n ◦ I ◦ π

β
n(u). Keeping this in mind, using the Lipschitz property of I, we have

‖I(u)− I(π̂βnu)‖L∞(Rd) ≤ C‖u− πβnu‖Cβ(Rd).

Since 2n−2 ≥ K we have that I(π̂βnu) = π̂0
nI(π̂βnu) = In(u) when restricted to BK ∩ Gn, which

thanks to Lemma 4.21 implies the first estimate. Next, Theorem 4.13 guarantees that

‖π̂0
nI(u)− π̂0

nI(π̂βnu)‖L∞(K) ≤ C‖I(u)− I(π̂βnu)‖L∞(Rd) ≤ C‖u− πβnu‖L∞(Rd).

Thus,

‖In(u)− I(u)‖L∞(K) ≤ ‖π̂0
nI(u)− In(u)‖L∞(K) + ‖π̂0

n(I(u))− I(u)‖L∞(K)

≤ C‖u− πβnu‖Cβ(Rd) + ‖π̂0
n(I(u))− I(u)‖L∞(K).

Applying Lemma 4.21 to the first term and Remark 4.22 to the second, we conclude that

lim
n→∞

‖Inu− Iu‖L∞(K) = 0.

�

Corollary 5.20. Assume I satisfies Assumptions 1.1, 1.3, and 1.4, as stated for Cβb (Rd). Then

for every u ∈ Cβb (Rd) and every R > 0,

lim
n→∞

‖Inu− Iu‖L∞(BR) = 0.
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Proof. Fix u ∈ Cβb (Rd) and R, ε > 0. For K > 0 (to be determined later), we may decompose u
as u = u0 + u1, where u0 is compactly supported in B2K+1 and u1 ≡ 0 in B2K , all such that

‖ui‖Cβ(Rd) ≤ C‖u‖Cβ(Rd), i = 1, 2.

The constant C > 1 being independent of K. Now, by Assumption 1.3 and since u ≡ u0 in B2K ,
we have

|I(u0)− I(u)| ≤ ρ(K)‖u− u0‖L∞(Rd) ≤ 2Cρ(K)‖u‖Cβ(Rd).

Choose K large enough so that K ≥ 2R and 2Cρ(R)‖u‖Cβ(Rd) ≤ ε/2. Then, with this K, we
apply Lemma 5.19 two times, and conclude that there is some n0 > 0 such that

|In(u0)− I(u0)|+ |In(u0)− In(u)| ≤ ε/2 whenever n ≥ n0.

On the other hand, in all Rd we have the pointwise inequality,

|In(u)− I(u)| ≤ |In(u0)− I(u0)|+ |In(u0)− In(u)|+ |I(u0)− I(u)|,
and it follows that, for x ∈ BR and n ≥ n0, that

|In(u, x)− I(u, x)| ≤ ε,
and the corollary is proved.

�

5.5. Proofs of Theorems 1.11 and 1.14. We conclude this section with the proofs of the
remaining theorems.

Proof of Theorem 1.11. Consider the set DI . The proof will boil down to showing that for any

u, v ∈ Cβ0
c (Rd) and any x ∈ Rd there is some L ∈ DI such that

I(u, x) ≤ I(v, x) + L(u− v, x).

Fix u, v and x. Then, by Remark 5.4, for every n we have

In(u, x) ≤ max
Ln∈DIn

{In(v, x) + Ln(u− v, x)}.

In particular, for every n, there is some Ln ∈ DIn such that (with this same u, v and x)

In(u, x) ≤ In(v, x) + Ln(u− v, x).

Let us obtain an inequality as we let n→∞ along some subsequence. Thanks to Corollary 5.20,
for every x ∈ Rd we have

lim
n→∞

In(u, x) = I(u, x), lim
n→∞

In(v, x) = I(v, x).

On the other hand, Lemma 5.16 says there is a subsequence nk and an operator L such that
Lnk(u− v, x) converges to L(u− v, x), and moreover L ∈ DI , by the definition of DI . Then, we
conclude that

I(u, x) ≤ I(v, x) + L(u− v, x) ≤ sup
L∈DI

{I(v, x) + L(u− v, x)}.

The above holds for any pair of functions u and v and any point x ∈ Rd. Taking the minimum
over all v, we obtain for any u and x,

I(u, x) = min
v∈Cβb (Rd)

max
L∈DI

{I(v, x)− L(v, x) + L(u, x)} .

Using v ∈ Cβb (Rd) and L ∈ DI as the set of labels, which we rename ab, and letting fab(x)
correspond to the functions I(v, x)− L(v, x), we obtain the desired min-max representation.

The L∞ bounds for the coefficients follow from the construction of Aηk , etc... in (5.8), (5.9),
(5.10). The continuity of the coefficients and the Lévy measures follows from Lemma 5.16.
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�

Proof of Theorem 1.14. For the versions of Theorems 1.9 and 1.10 with β < 2 we apply the last
part of Lemma 3.9 to conclude the functionals (or translation invariant operators) appearing in
the min-max all have the corresponding simpler form. As for Theorem 1.11, we use instead the
last part of Corollary 5.18 to obtain the simpler expresion for the Lévy operators in the cases
where β < 2.

�

6. Some Examples

In this section we list some examples to which our results apply, yet the integro-differential
structure given in either (1.2) or (1.3) is not readily apparent from the definition of the operator
itself. We emphasize that most cases of the linear examples that we list were already contained
in the classic work of Courrège [19], but we include them here for the sake of illustration. In all
of these examples, the operators satisfy the GCP and the other technical requirements to apply
the results presented above. We do not intend to give all details, but rather just make a list,
with some appropriate references. At the end of the section, we list how these examples relate to
Assumptions 1.1–1.4.

6.1. The statement of the examples.

Example 6.1. The generator of a Markov process. Assume that Xt is a Markov process taking
values in Rd, and that Ex is the expectation of the process, having started from x at t = 0. The
generator is defined as the operator

L(u, x) = lim
t→0

E(u(Xt))− E(u(X0))

t
,

over all u for which the limit exists. (See Liggett [42, Chapter 3].)

Thanks to the fact that E preserves ordering, one can immediately see that L enjoys the GCP.
When Xt is such that L : C2

b → C2
b , this example is covered by Courrège [19]; but if Xt is such

that L : Cβb → C0
b (in a Lipschitz fashion) for some 0 < β < 2, then by Theorem 1.14, there are

fewer terms (see the list just above Theorem 1.14 for our use of the notation Cβb (Rd)). In this
context, the result of Courrège can be seen as a version of the Lévy-Khintchine formula for a
process whose increments need not be stationary.

Example 6.2. The Dirichlet-to-Neumann map for linear, elliptic operators on half-space. As-
sume that L is an operator that admits unique bounded solutions on Rd+1

+ and that has a compar-

ison principle. What we mean by this is the following: we can take u ∈ C1,α
b (Rd) and associate

to it the unique bounded solution, Uu of

L(Uu, X) = 0 in Rd+1
+ , and Uu = u on Rd × 0.

A couple of reasonable examples would be

L(U,X) = tr(A(X)D2U(X)) or L(U,X) = div(A(X)∇U),

where A is uniformly elliptic and Hölder continuous. The Dirichlet-to-Neumann map is then
defined as

I(u, x) := ∂nUu(x).
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First of all, the assumptions on A are such that for some α′, Uu ∈ C1,α′

b

(
Rd+1

+

)
and hence

the normal derivative is well defined (see, e.g. [23, Chapters 8, 9]). It is not hard to check that
this operator satisfies the GCP, and this fact comes entirely from the property that the solution
operator, by the assumed comparison principle, preserves ordering of solutions whenever the
boundary data are ordered (it has nothing to do with linearity of the solution operator). This
is, again, within the context of Courrège’s result, but we can invoke Theorem 1.14 to remove
extra terms of order higher than 1. Ellipticity and scaling show that this is always an operator
of order 1 (and will map C1,α → Cα

′
). We note that in this example, via linear equations with

nice coefficients, one can derive lots of information about the operator ∂nUu by directly using the
Poisson kernel that represents the solution Uu.

In the context of periodic equations, one can use the results in Sections 4 and 5 to show that
the coefficients in the resulting Lévy operators will share the same periodicity. In fact, this is
very straightforward if I is linear. If instead one looks at almost periodic coefficients, it seems
reasonable to hope that the coefficients will also be almost periodic, but we have not checked this
claim. If it is the case, there could be an application to some boundary homogenization problems
with irrationally oriented half-spaces inside a periodic medium, related to [31]. Operators related
to the Dirichlet-to-Neumann mapping of this example are also of interest in conformal geometry,
see Chang-Gonzalez [13]. It is also possible to consider an elliptic equation with weights in order
to obtain some operators of order different than 1, e.g. Caffarelli-Silvestre [8].

Example 6.3. The boundary process of a reflected diffusion. (See Hsu [32], or [33, Chp. IV,
Sec. 7] and/or [45, Sec. 8].)

In this context, one starts with a diffusion in Rd+1
+ , say Xt, so that Xt reflects off of the

bottom boundary whenever it reaches it. Under a time rescaling of Xt (because it spends zero
time on the boundary), the resulting process can be viewed at times only when it hits Rd × {0},
and induces a pure jump process on Rd × {0}. This process is generated by an operator of the
form (1.2) with A ≡ 0. It turns out that this generator for the boundary process is exactly the
Dirichlet-to-Neumann mapping from the previous example. This process was studied in a smooth
domains for Brownian motion by Hsu [32].

Example 6.4. Subordinated diffusions and Bernstein functions. (See Schilling-Song-Vondraček
[46].)

The time-rescaling of the reflected diffusion in the previous example is just one choice of a
rescaling, and in general one can time-rescale diffusions on Rd (so no boundary space here) in a
myriad of fashions to create new stochastic processes from one reference Brownian motion. This
is a process known as subordination, and it can be used to create operators with generators in the
class (1.2), starting with one that may simply only contain the second order term. The generator
for the subordinated process will enjoy the GCP because the generator of the original diffusion
also enjoys the GCP. This technique has played a large and fundamental role in the study of Lévy
processes, and one can see it in use in e.g., the book of Schilling-Song-Vondraček [46], especially
[46, Chapter 13]. The subordination formula is closely related to an extension into plus one space
variables, and this extension was used to create operators of fractional order that enjoy the GCP
in the work of Stinga-Torrea [55] and also provide other properties of the fractional operators.

Example 6.5. The Monge-Ampère operator, MA(u, x) = det(D2u).

When one restricts this operator to the subset of C2 of convex functions, then MA is in fact
(degenerate) elliptic and locally Lipschitz. Specifically for each δ > 0, MA is uniformly elliptic
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(depending upon δ), Lipschitz, and translation invariant as a mapping,

MA : {u ∈ C2
b (Rd) :

1

δ
> D2u > δ} → C0

b (Rd).

Thus, MA, must enjoy a min-max structure. Experts have known and utilized this min-max
propert of MA in the study of fully nonlinear elliptic equations for a long time, and one can show
that

(MA(u, x))1/d =
1

d
inf{tr(AD2u(x)) : A ≥ 0, and det(A) = 1}.

In fact, this formula is intimately connected with various investigations into nonlocal operators
that should be an analog of MA in the fractional setting (as of yet, there is not one that is
considered better than others). Some works that address nonlocal analogs of MA are: [7], [11],
and [28].

Example 6.6. General nonlocal operators as treated in Caffarelli-Silvestre [9] [10]. These are
simply operators that are assumed to satisfy the GCP, are defined for all functions in C1,1(Rd),
map C2

b (Rd)→ C0
b (Rd), and satisfy a form of uniform ellipticity that is given by the existence of

concave respectively convex operators, M−L and M+
L so that

for all u, v ∈ C1,1(Rd), M−L(u− v, x) ≤ I(u, x)− I(v, x) ≤M+
L(u− v, x). (6.1)

Here, L is a class of linear operators that is usually a particular subset of those that satisfy the
Lévy type condition (1.2).

This context for nonlocal operators was given in [9, Definition 3.1], and it played an important
role in many of the results– especially when L is chosen to contain certain classes of operators.
These operators, in cases in which they are Lipschitz fall into the scope of our results, and fur-
thermore, the role of the extremal operators gives extra information about the min-max formula.
In particular, as shown in [29, Section 4.6], when ellipticity occurs with respect to M±L , then
the min-max may be restricted to only utilize linear functionals (or linear operators) that also
satisfy the extremal inequality in (6.1). This also appeared in a homogenization result by one of
the authors in which they were unable to show that the limit operator had an explicit integro-
differential formula, but rather was only integro-differential and uniformly elliptic in the sense of
[9, Definition 3.1] ( see the homogenization in [47]).

Example 6.7. The Dirichlet to Neumann map for fully nonlinear elliptic equations. In Example
6.2, the linearity of L is not necessary, and the function Uu can also be taken to solve a fully
nonlinear, uniformly elliptic equation in Rd+1

+ . These equations always possess a comparison
principle (by definition), and under most reasonable assumptions, the solution Uu will be globally

C1,α′, allowing for the normal derivative to be defined classically (see [52] for this regularity).

This was a main topic in the recent paper by the authors and Kitagawa [26]. It turns out that
the extremal operators (as in Example 6.6) for the nonlinear D-to-N not only play a crucial role
in investigating the Lévy measures in the min-max, but they also take a refreshingly simple form.
The extremal operators in this case, M±L of Example 6.6, are simply the Dirichlet-to-Neumann
operators for the solutions of the corresponding extremal operators for the elliptic second order
equation in Rd+1

+ . These are usually called the Pucci extremal operators (see [12]), and solutions
to their equations are generally very well behaved. In [26], the properties of the Lévy measures in
the min-max are linked to the harmonic measures for linear equations with bounded measurable
coefficients (e.g. [39]), but there is still more to learn about them before they can be connected
with existing integro-differential theory.
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Example 6.8. An operator that drives surface evolution in one and two phase free boundary
problems related to a type of Hele-Shaw flow. Given f ∈ C1,α(Rd), such that 0 < inf f ≤ sup f <
∞, we can define the unique solution, Uf , of the elliptic equation,

∆Uf = 0 in {(x, xd+1) : 0 < xd+1 < f(x)},
Uf = 1 on {xd+1 = 0}, Uf = 0 on {(x, dd+1) : xd+1 = f(x)}.

This allows to define a (fully nonlinear) operator on f as

I(f, x) := ∂nUf (x, f(x)),

that is, the normal derivative of the solution on the upper boundary given by the graph of f .

For Hele-Shaw flow in the simplified setting that the free boundary is parametrized by the
graph of f(·, t), it can be shown that the free boundary evolves by a normal velocity that at
each time is given by I(f, x). The interpretation here is that fluid flows into the domain under a
pressure at the bottom boundary, xd+1 = 0, and the top edge of the fluid exists at xd+1 = f(x),
with Uf representing the pressure of the fluid. This pressure induces a force on the fluid, which
is given by ∂nUf (x, f(x)) at the top boundary. This operator, and its implications for rewriting
a class of free boundary problems that are similar to Hele-Shaw was studied by the authors and
Chang Lara in [16]. In particular, the min-max formula makes it straightforward to convert the
free boundary flow into a nonlocal parabolic equation for f , and this parabolic equation is very
similar to ones that have already been studied in the nonlocal literature (e.g. [51]). When Uf is
defined to be harmonic in the domain determined by f , standard regularity theory immediately
gives estimates that show there is some α′ so that the mapping from f to I(f) is Lipschitz from

C1,α(Rd) to Cα
′
(Rd). In [16] it was also shown that the same Lipschitz property can be obtained

when Uf is defined as the solution of a nonlinear uniformly elliptic second order equation instead
of just the Laplacian. This operator gives a good example of what can be said in the translation
invariant case of the min-max, and its properties are studied initially in [16]. Even in the simplest
case of defining Uf to be harmonic, the resulting operator I will always be inherently nonlinear
and nonlocal.

6.2. Relationship to Assumptions 1.1–1.4. Here we list how each of the above examples fits
within the context of Assumptions 1.1–1.4.

(Example 6.1). By construction, this L is always linear. Thus, Assumption 1.1 follows from
simply saying that L is a bounded operator on Cβ, which of course requires assumptions on the
process, Xt, or more specifically the transition probability measure for Xt. Again, via linearity,
Assumption 1.2 follows whenever the process, Xt, has stationary and independent increments.
Assumptions 1.3 and 1.4 will be an extra requirement on the transition probability measure for
Xt. In particular (although a bit circular), Assumption 1.4, in view of linearity, is equivalent to
the martingale problem for Xt having a solution and the generator having uniformly continuous
coefficients.

(Example 6.2). (The interested reader can see [26] for more details.) Assumption 1.1 holds

for C1,α → Cα
′

when A is α-Hölder continuous. Assumption 1.2 holds if A is a constant.
Assumption 1.3 holds in both of the above settings, by using a barrier argument (which is easier
implemented for the non-divergence equation). Since I is linear, Assumption 1.4 holds when A
is Hölder continuous. Indeed, by linearity, checking Assumption 1.4 is equivalent to estimating

I(τ−zu, x+ z)− I(u, x).

In the case of divergence equations, one can write down the equations satisfied for V = τ−zUu,
and then also the equation satisfied by W := Uτ−zu− V . The desired estimate is then equivalent
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to estimating |∂nW (x+ z)|, i.e. a global Lipschitz estimate for W . Since W satisfies

div(A(X)∇W (X)) = −div((A(X)−A(x− z))∇V ),

we see that by global Lipschitz estimates,

|∇W | ≤ C‖(A−A(· − z))∇V ‖L∞ ≤ C |z|α ,

by the original assumption that A is Hölder continuous. (Note, the Lipschitz estimates here are
a standard modification to, e.g. [25, Lemma 3.2] to allow for a right hand side of the form div(f)
with f ∈ L∞.)

(Example 6.3). In most reasonable situations in which the diffusion has regular coefficients,
this is contained in the previous example.

(Example 6.4). This, of course, depends heavily on the original Markov process and the
choice of subordinator. However, one of the most classical situations starts with a Brownian
motion and then uses a Lévy stable subordinator. In this case, the resulting operator is translation
invariant, and Assumptions 1.1 and 1.2 follow more or less by construction.

(Example 6.5). This is a translation invariant operator, and as mentioned already satisfies
the Lipschitz property on the specified convex subsets of C2. So, Assumptions 1.1 and 1.2 hold.

(Example 6.6). As this is a general example, the operators only satisfy the given assumptions
when explicitly required to do so. However, the interesting part of this example arises from
the fact that the knowledge of the extremal inequalities in (6.1) in fact gives more detailed
information about the linear operators that will appear in the min-max of Theorems 1.9–1.14.
This is discussed in [29, Section 4.6].

(Example 6.7). This operator satisfies Assumption 1.1 as a mapping of C1,α → Cα
′
(for some

0 < α′ < α) under standard assumptions about F . The relevant regularity theory comes from
Silvestre-Sirakov [52]. It can also be checked by using the same type of barrier argument that
works for Example 6.2 will show Assumption 1.3 is also satisfied. Due to the nonlinear nature
of the D-to-N in this setting, it is not obvious how to show that Assumption 1.4 is satisfied– we
do not know if it satisfied or not. Thus, the best one can say about this operator when it is not
translation invariant is the outcome of Theorem 1.9. We simply note to the interested reader
that because of the lack of exact cancelation from the fact that the mapping is not linear, one
probably needs more detailed information about F . Indeed, using the extremal operators would
not help because it would produce

I(v + τ−zu, x+ z)− I(v, x+ z)− (I(v + u, x)− I(v, x)) ≤M+(τ−zu, x+ z)−M−(u, x)

= M+(u, x)−M−(u, x).

Here we use M± as the extremal operators for I, and also that these are translation invariant.
This estimate completely neglects the influence of the shift, τz, and so it would not be useful
(furthermore, one expects that M+(u, x) > M−(u, x)).

(Example 6.8). As it is stated above, this operator, I, is actually translation invariant, and
so it is straightforward to check that Assumptions 1.1 and 1.2 hold. In the case that the equation
for U (i.e. ∆U = 0) is replaced by either a fully nonlinear operator and/or and operator that is
not translation invariant, it is harder to check all of the applicable assumptions. Again, for fully
nonlinear equations that define U , in [16] I was checked to be Lipschitz as a map of C1,α → Cα

′

(which took a reasonably non-trivial amount of work).

Appendix A. Additional proofs and computations

Proof of Proposition 4.10. Fix u ∈ Cβb (Rd), and let x ∈ Gn, then by the regularity of u,

|u(x± hnek)− (u(x)± hn∇u(x0) · ek)| ≤ C‖u‖Cβhmin{β−1,1}
n .
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Therefore,

|u(x+ hnek)− u(x+ hnek)− 2hn∇u(x0) · ek| ≤ C‖u‖Cβhmin{β−1,1}
n

For the second estimate, we shall make use of

|u(x+ hnek)− (u(x) + hn∇u(x0) · e+ h2
n

1
2(D2u(x)e, e))| ≤ C‖u‖Cβhmin{β−2,1}

n .

Therefore,

u(x+ hnek + hne`)− u(x+ hnek)− u(x+ hne`) + u(x)

“ =′′ u(x) + hn∇u(x0) · (ek + e`) + h2
n

1
2(D2u(x)(ek + e`, ek + e`)

− (u(x) + hn∇u(x0) · ek + h2
n

1
2(D2u(x)ek, ek))

− (u(x) + hn∇u(x0) · e` + h2
n

1
2(D2u(x)e`, e`)) + u(x)

= h2
n

1
2

(
(D2u(x)(ek + e`, ek + e`)− (D2u(x)ek, ek))− (D2u(x)e`, e`))

)
= h2

n(D2u(x)ek, e`)

It follows that

|u(x+ hnek + hne`)− u(x+ hnek)− u(x+ hne`) + u(x)− h2
n(D2u(x)ek, e`)| ≤ C‖u‖Cβhmin{β−2,1}

n ,

and the proposition is proved. �

Proof of Proposition 4.11. Fix u ∈ Cβb (Rd).
Step 1. Let x ∈ Gn, then

|(∇n)1u(x)−∇u(x)| ≤ C‖u‖Cβhβ−1
n , if β ∈ [1, 2],

|(∇n)2u(x)−D2u(x)| ≤ C‖u‖Cβhβ−2
n , if β ∈ [2, 3].

Proof of Step 1. By the regularity of u,

|u(x± hnek)− (u(x)± hn∇u(x0) · ek)| ≤ C‖u‖Cβhmin{β−1,1}
n .

Therefore,

|u(x+ hnek)− u(x+ hnek)− 2hn∇u(x0) · ek| ≤ C‖u‖Cβhmin{β−1,1}
n

Step 2. Given x ∈ Gn, we have

|(∇n)1u(x)| ≤ C‖u‖C1 , |(∇n)2u(x)| ≤ C‖u‖C2 .

Step 3.

|(∇n)1u(x̂)− (∇n)1u(ŷ)| ≤ C‖u‖Cβd(x̂, ŷ)β−1, if β ∈ [1, 2],

|(∇n)2u(x̂)− (∇n)2u(ŷ)| ≤ C‖u‖Cβd(x̂, ŷ)β−2, if β ∈ [2, 3].

�

Computation for Lemma 4.17.

∇R̃(x) = 2C‖w‖Cβ0η
′
(
|x− x0|β0

hn

)
β0|x− x0|β0−1 (x− x0)

|x− x0|

If |x− x0|β0 ≤ hn, then

∇R̃(x) = 2C‖w‖Cβ0β0|x− x0|β0−1 (x− x0)

|x− x0|
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This expression is zero except when |x− x0| ≤ h1/β0
n , so

|∇R̃(x)| ≤ 2C‖w‖Cβ0β0h
1−1/β0
n .

Furthermore, for x, x′ such that |x− x0|β0 ≤ hn, we have

|∇R̃(x)−∇R̃(x′)| ≤ 2Cβ0‖w‖Cβ0

∣∣∣∣|x− x0|β0−1 (x− x0)

|x− x0|
− |x′ − x0|β0−1 (x′ − x0)

|x′ − x0|

∣∣∣∣
≤ C‖w‖Cβ0h

β0−β
n |x− x′|β.

In conclusion,

‖R̃‖L∞ + ‖∇R̃‖L∞ + [∇R̃]Cβ−1 ≤ C‖w‖Cβ0 (hn + h1−1/β0
n + hβ0−β

n ) ≤ C‖w‖Cβ0h
γ
n.

�
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