POSITIVELY CURVED MANIFOLDS WITH LARGE CONJUGATE RADIUS

BENJAMIN SCHMIDT

ABSTRACT. Let M denote a complete simply connected Riemannian manifold with all sectional curvatures ≥ 1 . The purpose of this paper is to prove that when M has conjugate radius at least $\pi/2$, its injectivity radius and conjugate radius coincide. Metric characterizations of compact rank one symmetric spaces are given as applications.

1. Introduction

The Rauch-Berger-Klingenberg sphere theorem has inspired many results in the study of complete, connected, and positively curved manfolds [Rch51, Ber60, Kli61].

Theorem (Rauch-Berger-Klingenberg). If M is a simply connected manifold with $1 \le \sec < 4$, then M is homeomorphic to a sphere.

The simply connected compact rank one symmetric spaces satisfy $1 \le \sec \le 4$. Consequently, the above hypothesis that sectional curvatures are positive and *strictly* quarter pinched cannot be relaxed to allow quarter pinched positive sectional curvatures. Berger's rigidity theorem [Ber60] classifies manifolds with positive quarter pinched sectional curvatures.

Theorem (Berger). If M is a simply connected manifold with $1 \le \sec \le 4$, then M is homeomorphic to a sphere or isometric to a compact rank one symmetric space.

The problem of improving homeomorphism to diffeomorphism in the above two theorems has very recently been resolved using Ricci flow (c.f. [BöWi08, BrSc09, BrSc08, NiWo07, PeTa09]). An important step in the original proofs involves estimating the injectivity radii of manifolds with quarter pinched positive sectional curvatures. In [Kli61, ChGr80, KlSa80], it is proved that if M satisfies the hypotheses of Berger's theorem, then its injectivity radius $\operatorname{inj}(M)$ and conjugate radius $\operatorname{conj}(M)$ are equal. By the Rauch comparison theorem, manifolds with $\operatorname{sec} \leq 4$ satisfy $\operatorname{conj}(M) \geq \pi/2$. In this paper, the upper

curvature bound assumption is replaced by a lower bound on the conjugate radius.

Proposition 1. Let M be a simply connected manifold with $\sec \ge 1$. If $\operatorname{conj}(M) \ge \pi/2$, then $\operatorname{inj}(M) = \operatorname{conj}(M)$.

Proposition 1 is applied to prove three rigidity results. The first generalizes Berger's rigidity theorem.

Theorem 1. Let M be a simply connected manifold with $\sec \ge 1$. If $\operatorname{conj}(M) \ge \pi/2$, then M is homeomorphic to a sphere or isometric to a compact rank one symmetric space.

Theorem 1 is an easy consequence of propostion 1 and earlier generalizations of the sphere and Berger rigidity theorems [GrSh77, GrGr87, Wi01]. As with the injectivity radius, conjugate radius, and diameter, the radius of a manifold $\operatorname{rad}(M)$ has played an important role in rigidity results for positively curved manifolds (c.f. [GrPe93, ShYa89, Wa04, Wi96, Xia09]). The second application of proposition 1 generalizes the following theorem due to Xia [Xia06].

Theorem (Xia). If M satisfies $\sec \ge 1$ and $\operatorname{rad}(M) > \pi/2$, then $\operatorname{conj}(M) \le \operatorname{rad}(M)$ with equality if and only if M is isometric to a constant curvature sphere.

Note that manifolds M with $\sec \ge 1$ and $\operatorname{rad}(M) > \pi/2$ are homeomorphic to a sphere by [GrSh77]. In particular, such manifolds are simply connected.

Theorem 2. If M is simply connected and satisfies $\sec \ge 1$ and $\operatorname{rad}(M) \ge \pi/2$, then $\operatorname{conj}(M) \le \operatorname{rad}(M)$ with equality if and only if M is isometric to a compact rank one symmetric space.

A final application is motivated by the Shankar-Spatzier-Wilking spherical rank rigidity theorem [ShSpWi05].

Theorem (Shankar-Spatzier-Wilking). Let M be a simply connected manifold with $\sec \le 1$. If for each unit speed geodesic $\gamma : \mathbb{R} \to M$, $\gamma(\pi)$ is the first conjugate point to $\gamma(0)$ along γ , then M is isometric to a compact rank one symmetric space.

Theorem 3. Let M be a simply connected manifold with $\sec \ge 1$. If for each unit speed geodesic $\gamma : \mathbb{R} \to M$, $\gamma(\pi/2)$ is the first conjugate point to $\gamma(0)$ along γ , then M is isometric to a compact rank one symmetric space.

Acknowledgments The author was partially supported by the NSF grant DMS-0905906.

2. Preliminaries

This section collects together preliminary material and notation. General references about Riemannian manifolds include [ChEb75], and [doCa92] though our notation differs in parts. Throughout, M denotes a closed Riemannian manifold and $\pi:TM\to M$ its tangent bundle. Let T_pM denote the fiber of TM above a point $p\in M$ and for r>0, let $B_r(0)\subset T_pM$ denote the open r-ball centered at 0. Let $S_pM\subset T_pM$ denote the unit sphere.

The Riemannian metric induces an exponential map $\exp: TM \to M$. Its restriction to the tangent space T_pM at a point p will be denoted by $\exp_p: T_pM \to M$. The metric also induces a Riemannian connection denoted by ∇ . This connection is used to define the curvature tensor R by

$$R(X, Y, Z) = \nabla_Y \nabla_X Z - \nabla_X \nabla_Y Z + \nabla_{[X,Y]} Z$$

where X, Y, and Z are vector fields on M. Finally, let $d: M \times M \to \mathbb{R}$ denote the distance function on M.

2.1. Metric invariants. A critical point $v \in T_pM$ of \exp_p is defined to be a conjugate vector. Its multiplicity is defined to be the dimension of the kernel of the derivative map of \exp_p at the vector v. The point $q = \exp_p(v)$ is said to be a conjugate point to p along the geodesic $\gamma(t) = \exp_p(tv)$ and its multiplicity as a conjugate point is defined to be the multiplicity of v as a conjugate vector. Equivalently, q is a conjugate point to p along γ if there is a nonzero normal Jacobi field J(t) along γ with J(0) = J(1) = 0. Jacobi fields are vector fields along γ satisfying the second order differential equation

$$J'' + R(\dot{\gamma}, J)\dot{\gamma} = 0.$$

They are determined by their initial value J(0) and initial derivative J'(0).

Let $TConj(p) \subset T_pM$ denote the locus of conjugate vectors in T_pM . The *conjugate radius of* M at a point p is defined by

$$\operatorname{conj}(p) = \sup\{r > 0 \mid \operatorname{TConj}(p) \cap B_r(0) = \emptyset\}$$

$$= \sup\{r > 0 \mid \exp_p|_{B_r(0)} \text{ has full rank}\}$$

and the $conjugate\ radius$ of M is defined by

$$\operatorname{conj}(M) = \inf \{ \operatorname{conj}(p) \, | \, p \in M \}.$$

By the Cartan-Hadamard theorem, manifolds with a point p satisfying $\operatorname{conj}(p) = \infty$ have universal covers diffeomorphic to Euclidean space. By the Bonnet-Myers theorem, manifolds with $\sec \ge 1$ have

compact universal covers and therefore finite conjugate radius at each point.

The radius of M at a point p is defined by $\operatorname{rad}(p) = \max_{x \in M} \operatorname{d}(p, x)$. The radius of M is defined by $\operatorname{rad}(M) = \min_{p \in M} \operatorname{rad}(p)$ and the diameter of M is defined by $\operatorname{diam}(M) = \max_{p \in M} \operatorname{rad}(p)$.

For a unit vector $v \in S_pM$, the geodesic $\gamma(t) = \exp_p(tv)$ satisfies $d(p, \exp_p(tv)) = t$ for small t > 0. Define $\mu : S_pM \to \mathbb{R}$ by

$$\mu(v) = \max\{t > 0 \mid d(p, \gamma(t)) = t\}.$$

The vector $\mu(v)v \in T_pM$ is said to be a *cut vector*. The function $v \mapsto \mu(v)$ is a continuous function on the unit sphere S_pM . It achieves its minimum value, the *injectivity radius of* M at the point p, denoted by $\operatorname{inj}(p) > 0$. Equivalently,

 $\operatorname{inj}(p) = \max\{r > 0 \mid \exp_p|_{B_r(0)} \text{ is a diffeomorphism onto its image}\}.$

The *injectivity radius* of M is defined by

$$\inf(M) = \min\{\inf(p) \mid p \in M\}.$$

The inequalites $\operatorname{inj}(M) \leq \operatorname{rad}(M) \leq \operatorname{diam}(M)$ always hold. Geodesics do not minimize beyond their first conjugate point so that $\operatorname{inj}(M) \leq \operatorname{conj}(M)$. In fact, the injectivity radius equals the minimium of the conjugate radius and half the length of a shortest closed geodesic in M.

Denote the locus of cut vectors in T_pM by $\mathrm{TCut}(p)$. Its image in M under \exp_p , denoted by $\mathrm{Cut}(p)$, is the cut locus of p in M. Much of the topology of M is contained in the cut locus of a point $p \in M$. To be more precise, note that each point $q \in M \setminus \{p\}$ has a unique expression as $q = \exp_p(t_q v_q)$ for some $v_q \in S_pM$ and $0 < t_q < \mu(v_q)$. Then the map

$$r:M\setminus\{p\}\times[0,1]\to M\setminus\{p\}$$

defined by

$$(q,s) \mapsto \exp_p([t_q + s(\mu(v_q) - t_q)]v_q)$$

is a strong deformation retraction of $M \setminus \{p\}$ to $\operatorname{Cut}(p)$. In particular, $\operatorname{Cut}(p)$ is homotopy equivalent to $M \setminus \{p\}$.

2.2. **Indices of geodesics.** A reference for this section is [BaThZi82, Section 1], though our notation differs slightly.

Let $\Lambda = \Lambda(M)$ denote the path space of M. It consists of piecewise smooth curves $c:[0,1]\to M$. The energy function $E:\Lambda\to\mathbb{R}$ is defined by

$$E(c) = \int_0^1 \langle \dot{c}, \dot{c} \rangle \, dt$$

for $c \in \Lambda$. Critical points of E are point maps and geodesic segments parameterized proportionally to arc length.

Given a geodesic $\gamma \in \Lambda$, let $T_{\gamma}\Lambda$ denote the space of piecewise smooth normal vector fields V(t) along γ with V(0) = V(1) = 0. The index form is the symmetric bilinear $I_{\Lambda} : T_{c}\Lambda \times T_{c}\Lambda \to \mathbb{R}$ defined by

$$I_{\Lambda}(X,Y) = \int_{0}^{1} \langle X', Y' \rangle - \langle R(\dot{\gamma}, X) \dot{\gamma}, Y \rangle dt$$

for vector fields $X, Y \in T_{\gamma}\Lambda$.

For a fine enough subdivision $0 = t_0 < t_1 < \dots < t_n = 1$ of [0,1], the index form I_{Λ} is positive definite on the subspace $P \subset T_{\gamma}\Lambda$ consisting of normal vector fields V(t) with $V(t_i) = 0$ for each $i = 0, \dots, n$. The orthogonal complement of P in $T_{\gamma}\Lambda$ with respect to I_{Λ} is the finite dimensional space of piecewise Jacobi fields: vector fields $V \in T_{\gamma}\Lambda$ such that the restriction of V to $[t_i, t_{i+1}]$ is Jacobi for each $i = 0, \dots, n-1$. Thus, the index and nullity of a I_{Λ} are both finite.

The index of γ as a geodesic segment, denoted by $\operatorname{ind}_{\Lambda}(\gamma)$, is defined to be the index of the form I_{Λ} and the nullity of γ as a geodesic segment, denoted by $\operatorname{null}_{\Lambda}(\gamma)$, is defined to be the nullity of I_{Λ} . By the Morse index theorem, $\operatorname{ind}_{\Lambda}(\gamma)$ is equal to the number of points $\gamma(t)$ conjugated to $\gamma(0)$ along γ with $t \in (0,1)$ and counted with multiplicities.

The index of a smoothly closed geodesic is defined analogously by considering variations of the closed geodesic in the free loop space of M. Let $\Omega = \Omega(M)$ denote the free loop space of M. It consists of piecewise smooth curves $c:[0,1] \to M$ with c(0)=c(1). The energy function defined on Λ restricts to the energy function $E:\Omega \to \mathbb{R}$. Its critical points are point maps and smoothly closed geodesics parameterized proportionally to arc length.

Given a closed geodesic $\gamma \in \Omega$, let $T_{\gamma}\Omega$ denote the space of piecewise smooth normal vector fields V(t) along γ with V(0) = V(1). The index form $I_{\Omega}: T_{\gamma}\Omega \times T_{\gamma}\Omega \to \mathbb{R}$ is defined by the same formula as I_{Λ} . As above, the index and nullity of I_{Ω} are both finite. The index of γ as a closed geodesic, denoted by $\operatorname{ind}_{\Omega}(\gamma)$, is defined to be the index of the form I_{Ω} and the nullity of γ as a closed geodesic, denoted by $\operatorname{null}_{\Omega}(\gamma)$, is defined to be the nullity of I_{Ω} .

The nullspace of I_{Ω}

$$\operatorname{null}(I_{\Omega}) = \{ V \in T_{\gamma}\Omega \mid I_{\Omega}(V, X) = 0 \text{ for all } X \in T_{\gamma}\Omega \}$$

consists of *periodic* normal Jacobi fields along γ . As Jacobi fields are determined by their initial value and derivative, these are normal Jacobi fields J(t) along γ satisfying J(0) = J(1) and J'(0) = J'(1).

Note that since $T_{\gamma}\Lambda \subset T_{\gamma}\Omega$, $\operatorname{ind}_{\Lambda}(\gamma) \leq \operatorname{ind}_{\Omega}(\gamma)$. The difference $\operatorname{ind}_{\Omega}(\gamma) - \operatorname{ind}_{\Lambda}(\gamma)$ is known as the *concavity* of γ and its calculation involves the *Poincare map*. Let $L = \dot{\gamma}(0)^{\perp}$. The Poincare map is the linear map

$$\Theta: L \times L \to L \times L$$

defined by $\Theta(v, w) = (J(1), J'(1))$, where J(t) is the normal Jacobi field along γ with initial conditions J(0) = v and J'(0) = w. When $\Theta = \text{Id}$ the concavity is zero so that $\text{ind}_{\Lambda}(\gamma) = \text{ind}_{\Omega}(\gamma)$ (c.f. [BaThZi82, pg. 219]).

This section concludes with the statement of a simple lemma. Let V be a finite dimensional real vector space and $I: V \times V \to \mathbb{R}$ a symmetric bilinear form.

Lemma 1. Suppose that I has index one and that X is a subspace of V such that $I(x,x) \leq 0$ for each $x \in X$. Then

$$\dim(X \cap \operatorname{null}(I)) \ge \dim(X) - 1.$$

A proof is readily obtained after diagonalizing I.

2.3. Sublevels of E. For a>0, let $\Omega^{< a}$ (resp. $\Omega^{\le a}$) denote the subset of curves $c\in\Omega$ with E(c)< a (resp. $E(c)\le a$). This section contains two lemmas from [ChGr80] concerning the components of these sublevel sets. Some notation is needed first.

A continuous curve $\tilde{c}:[0,1]\to TM$ is said to be vertical if $c=\pi\circ\tilde{c}$ is constant. Let P denote the set of all continuous curves $c:[0,1]\to M$ and $P_0\subset P$ the subset of closed curves. Let \tilde{P} denote the set of all vertical curves in TM emanating from the zero section and $\tilde{P}_0\subset\tilde{P}$ the subset of closed curves. Endow $P,\ \tilde{P}$, and their subsets with the uniform topology. Let $\exp:\tilde{P}\to P$ denote the continuous map induced by $\exp:TM\to M$. Its image is defined to be the set of liftable curves in M and a curve $\tilde{c}\in\tilde{P}$ is said to be a lift of the curve $c=\exp(\tilde{c})$.

A lift $\tilde{c} \subset T_pM$ is said to be a regular lift if \exp_p has full rank at $\tilde{c}(t)$ for each $t \in [0,1]$. Let \tilde{Q} denote the open subset of \tilde{P} consisting of regular lifts. The restriction of Exp to \tilde{Q} is a homeomorphism onto its image $Q = \operatorname{Exp}(\tilde{Q})$. Let $\tilde{Q}_0 = \tilde{P}_0 \cap \tilde{Q}$ denote the set of closed regular lifts. The map Exp maps \tilde{Q}_0 onto an open subset Q_0 of P_0 .

Finally, for a curve $c \in P$, let $c_{\frac{1}{2}}$ and $c_{-\frac{1}{2}}$ be the curves defined by $c_{\frac{1}{3}}(t) = c(\frac{1}{2}t)$ and $c_{-\frac{1}{3}}(t) = c(1 - \frac{1}{2}t)$.

The next two lemmas are lemmas 1 and 3 from [ChGr80] respectively. They will be applied with r = conj(M).

Lemma 2. Suppose for some r > 0 and all $p \in M$, \exp_p is nonsingular on the open ball $B_r(0) \subset T_pM$. Let $c \in P_0$ be in the closure of $\exp(\tilde{P}_0) \cap \Omega^{\leq 4r^2}$. Then either $c \in Q_0$ (and thus is not a closed geodesic if nonconstant), or $c_{\frac{1}{2}}$ and $c_{-\frac{1}{2}}$ are geodesics of length r with conjugate endpoints. Furthermore $C = Q_0 \cap \Omega^{<4r^2}$ is a connected component of $\Omega^{<4r^2}$.

Lemma 3. Assume the hypotheses of lemma 2 and furthermore that any closed geodesic $c \in \overline{Q}_0 \cap \Omega^{\leq 4r^2}$ (necessarily of length 2r) has index at least two. Then $\overline{Q}_0 \cap \Omega^{\leq 4r^2}$ is the closure of $Q_0 \cap \Omega^{\leq 4r^2}$ and is a connected component of $\Omega^{\leq 4r^2}$

3. Proofs of main results

The main new technical observation in this paper consists of the following lemma.

Lemma 4. Assume that M is an oriented Riemannian manifold with $\sec \ge 1$ and $n = \dim(M)$ odd. If $\gamma \subset M$ is a closed geodesic of length π , then the index of γ in the free loop space $\Omega(M)$ is not one.

Proof. The proof is by contradiction. Assume that $\gamma \subset M$ is a closed geodesic of length π with $\operatorname{ind}_{\Omega}(\gamma) = 1$. Let v be a tangent vector to γ of length π and fix the parameterization of γ defined by $\gamma(t) = \exp(tv)$. Let $L(t) = \dot{\gamma}(t)^{\perp}$ and let L = L(0). For each $t \in \mathbb{R}$, parallel translation along γ defines an orientation preserving isometry $P_t: L \to L(t)$. Let $P = P_1: L \to L$.

The first step is to show that $P = -\operatorname{Id}$. Consider the (n-1)-dimensional space of vector fields along γ defined by

 $X = \{\sin(\pi t)E(t) \mid E(t) \text{ is a unit normal parallel field along } \gamma\}.$

Note that $X \subset T_{\gamma}\Omega$ and that for each $V \in X$,

$$I_{\Omega}(V,V) = \int_{0}^{1} \pi^{2} \cos^{2}(\pi t) - \pi^{2} \sin^{2}(\pi t) \sec(\dot{\gamma}, E)(t) dt$$
$$\leq \int_{0}^{1} \pi^{2} \cos^{2}(\pi t) - \pi^{2} \sin^{2}(\pi t) dt = 0$$

since $\sec \ge 1$. As $\operatorname{ind}_{\Omega}(\gamma) = 1$, lemma 1 implies that

$$\dim(X \cap \operatorname{null}(I_{\Omega})) \ge \dim(X) - 1 = n - 2.$$

A vector field $V(t) = \sin(\pi t)E(t) \in X \cap \text{null}(I_{\Omega})$ is a periodic Jacobi field. In particular, V'(0) = V'(1), whence E(0) = -E(1). Therefore -1 is an eigenvalue for $P: L \to L$ with multiplicity at least n-2. Since $\dim(L) = n-1$ is even and $P: L \to L$ is an orientation preserving

isometry, -1 must have multiplicity n-1, concluding the proof that $P=-\operatorname{Id}$.

Let E(t) be an arbitrary unit normal parallel field along γ . Consider the two dimensional space of vector fields along γ defined by

$$Y = \{(a\cos(\pi t) + b\sin(\pi t))E(t) \mid a, b \in \mathbb{R}\}.$$

As $P = -\operatorname{Id}$ we have that V(0) = V(1) for each vector field $V \in Y$. Therefore, Y is a subspace of $T_{\gamma}\Omega$. Since $\sec \geq 1$,

$$I(V, V) =$$

$$\pi^{2} \int_{0}^{1} (-a\sin(\pi t) + b\cos(\pi t))^{2} - (a\cos(\pi t) + b\sin(\pi t))^{2} \sec(\dot{\gamma}, E)(t) dt$$

$$\leq \pi^{2} \int_{0}^{1} (-a\sin(\pi t) + b\cos(\pi t))^{2} - (a\cos(\pi t) + b\sin(\pi t))^{2} dt = 0$$

with equality if and only if $\sec(\dot{\gamma}, E)(t) \equiv 1$. As $\operatorname{ind}_{\Omega}(\gamma) = 1$, lemma 1 implies that

$$\dim(Y \cap \operatorname{null}(I_{\Omega})) \ge \dim(Y) - 1 = 1.$$

In particular, there exists a nonzero field $V \in Y$ with I(V, V) = 0 so that $\sec(\dot{\gamma}, E) \equiv 1$. It follows easily that the space Y consists of periodic Jacobi fields.

The fact that the unit parallel field E(t) was arbitrary in the last paragraph has two consequences. First, the Poincare map

$$\Theta: L \times L \to L \times L$$

is the identity map. Therefore, $\operatorname{ind}_{\Omega}(\gamma) = \operatorname{ind}_{\Lambda}(\gamma)$. Secondly, all normal sectional curvatures of γ are one. The Rauch comparison theorem then implies that $\gamma(t)$ is not conjugated to $\gamma(0)$ for any 0 < t < 1. By the Morse index theorem $\operatorname{ind}_{\Lambda}(\gamma) = 0$. In conclusion, $0 = \operatorname{ind}_{\Lambda}(\gamma) = \operatorname{ind}_{\Omega}(\gamma) = 1$, a contradiction.

Next is the proof of proposition 1. The proof is well known given lemma 4 and follows the line of reasoning in [ChGr80] closely.

Proposition 1. Let M be a simply connected manifold with $\sec \ge 1$. If $\operatorname{conj}(M) \ge \pi/2$, then $\operatorname{inj}(M) = \operatorname{conj}(M)$.

Proof. The proof is by contradiction. Assume that $\operatorname{inj}(M) < \operatorname{conj}(M)$. As $\operatorname{inj}(M)$ always equals the smaller of $\operatorname{conj}(M)$ and half the length of a shortest closed geodesic in M, there is a closed geodesic $\tau \subset M$ of length $2\operatorname{inj}(M)$.

A standard argument implies that the geodesic τ has index zero in Ω . To see this, fix $p \in \tau$ and let $p' \in \tau$ be the point at distance

inj(M) from p. The geodesic τ consists of two subsegments τ_1 and τ_2 connecting p to p' and of length inj(M). If $\operatorname{ind}_{\Omega}(\tau) > 0$, then there is a third minimizing geodesic τ_3 joining p to p' and meeting τ orthogonally at the point p' (c.f. the proof of [doCa92, Proposition 3.4, pg. 281]). Since $\operatorname{inj}(M) < \operatorname{conj}(M)$, the points p and p' are not conjugated along either of the segments γ_1 and γ_3 . As these segments do not meet smoothly at p' it is possible to find a point $p'' \in \operatorname{Cut}(p)$ nearer to p than p' (c.f. [doCa92, Proposition 2.12, pg. 274]). This contradicts $\operatorname{d}(p,p') = \operatorname{inj}(M)$.

If $\dim(M)$ is even, Synge's trick implies that $\operatorname{ind}_{\Omega}(\tau) > 0$, a contradiction (c.f. the proof of [doCa92, Proposition 3.4, pg. 274]). From now on, assume that $\dim(M)$ is odd and at least three.

As M is simply connected, τ is null-homotopic. The Abresch-Meyer long homotopy lemma [AbMe97, Lemma 4.1] implies that every null-homotopy of τ passes through a curve of length at least $2\operatorname{conj}(M) \geq \pi$. It follows that for $e_0 = 4\operatorname{conj}(M)^2$ the space $\Omega^{< e_0}$ is disconnected.

Since $\sec \ge 1$, any closed geodesic of energy greater than e_0 has index at least $\dim(M) - 1 \ge 2$ in Λ and hence in Ω (c.f. [doCa92, Lemma 3.2, pg 276]). A consequence of this fact and the simple connectivity of M is that $\Omega^{\le e_0}$ is connected (c.f. [ChGr80, Lemma 4, pg. 440]). This will be used to argue that $\Omega^{\le e_0}$ is connected as well, the desired contradiction.

The first step is to see that each closed geodesic $\gamma \in \overline{Q}_0 \cap \Omega^{\leq e_0}$ (necessarily of length $2\operatorname{conj}(M)$) has index at least two in Ω . If $\operatorname{conj}(M) > \pi/2$, then this follows immediately from the remark at the beginning of the last paragraph. Otherwise, $\operatorname{conj}(M) = \pi/2$ and γ has length π . By lemma 2, $\operatorname{ind}_{\Omega}(\gamma) \geq 1$ and by lemma 4, $\operatorname{ind}_{\Omega}(c) \geq 2$, concluding this step.

Now lemma 3 implies that $\overline{Q}_0 \cap \Omega^{\leq e_0}$ is the closure of $Q_0 \cap \Omega^{< e_0}$ and is a connected component of $\Omega^{\leq e_0}$. As $\Omega^{\leq e_0}$ is connected, it follows that $\overline{Q}_0 \cap \Omega^{\leq e_0} = \Omega^{\leq e_0}$. In particular $Q_0 \cap \Omega^{< e_0}$ is dense in $\Omega^{\leq e_0}$ and hence in $\Omega^{< e_0}$. By lemma 2, $Q_0 \cap \Omega^{e_0}$ is a connected component of $\Omega^{< e_0}$. These last two remarks imply that $\Omega^{< e_0}$ is connected, a contradiction.

Theorem 1 is an easy consequence of proposition 1 and the next two theorems. The first theorem is due to Grove-Shiohama [GrSh77] and is a generalization of the sphere theorem.

Theorem 4 (Diameter sphere theorem). If M is a manifold with $\sec \ge 1$ and $\operatorname{diam}(M) > \pi/2$, then M is homeomorphic to a sphere.

The second theorem is due to Gromoll-Grove-Wilking [GrGr87, Wi01]. It is a generalization of Berger's rigidity theorem. For a recent alternative proof, see [CaTa07].

Theorem 5 (Diameter rigidity theorem). If M is a simply connected manifold with $\sec \ge 1$ and $\operatorname{diam}(M) = \pi/2$, then M is homeomorphic to a sphere or isometric to a compact rank one symmetric space.

Theorem 1. Let M be a simply connected manifold with $\sec \ge 1$. If $\operatorname{conj}(M) \ge \pi/2$, then M is homeomorphic to a sphere or isometric to a compact rank one symmetric space.

Proof. Proposition 1 implies that $\operatorname{inj}(M) = \operatorname{conj}(M) \ge \pi/2$. Therefore $\operatorname{diam}(M) \ge \operatorname{inj}(M) \ge \pi/2$. The conclusion follows from the diameter sphere and rigidity theorems 4 and 5.

Theorem 2. If M is simply connected and satisfies $\sec \ge 1$ and $\operatorname{rad}(M) \ge \pi/2$, then $\operatorname{conj}(M) \le \operatorname{rad}(M)$ with equality if and only if M is isometric to a compact rank one symmetric space.

Proof. The proof of the inequality $\operatorname{conj}(M) \leq \operatorname{rad}(M)$ is by contradiction. If $\operatorname{conj}(M) > \operatorname{rad}(M) \geq \pi/2$, then $\operatorname{inj}(M) = \operatorname{conj}(M) > \operatorname{rad}(M)$ by proposition 1. This is a contradiction since $\operatorname{inj}(M) \leq \operatorname{rad}(M)$ always holds.

Now consider the equality case $\operatorname{conj}(M) = \operatorname{rad}(M) \ge \pi/2$. Theorem 1 implies that M is isometric to a compact rank one symmetric space or homeomorphic to a sphere. Moreover, proposition 1 implies that $\operatorname{inj}(M) = \operatorname{conj}(M) = \operatorname{rad}(M)$. Therefore, the conclusion follows from the following lemma.

Lemma. Assume that M is homeomorphic to a sphere and that $\operatorname{inj}(M) = \operatorname{rad}(M)$. Then M is isometric to a constant curvature sphere.

By the resolution of the Blaschke conjecture for spheres (c.f. [Ber78], [Kaz78], [Wei74], and [Ya80]), a Riemannian metric on the sphere with $\operatorname{inj}(M) = \operatorname{diam}(M)$ is isometric to a constant curvature sphere. It suffices to prove that $\operatorname{diam}(M) \leq \operatorname{inj}(M)$.

Choose a point $p \in M$ with $\operatorname{rad}(p) = \operatorname{rad}(M)$. As $\operatorname{inj}(M) = \operatorname{rad}(M)$, all points $q \in \operatorname{Cut}(p)$ are at distance $\operatorname{inj}(M)$ from p. In the language of [Bes78, Definition 5.22, pg. 132], M is said to have spherical cut locus at the point p. By [Bes78, Proposition 5.44, pg. 138] and [Bes78, Proposition 5.39, pg. 136], it follows that $\operatorname{Cut}(p)$ is a smooth closed submanifold of M. Since $\operatorname{Cut}(p)$ is homotopy equivalent to \mathbb{R}^n via the strong deformation retraction from $M \setminus \{p\}$ to $\operatorname{Cut}(p)$, it follows that $\operatorname{Cut}(p) = \{q\}$ for some $q \in M$.

Choose points $x, y \in M$ such that $d(x, y) = \operatorname{diam}(M)$. Then x and y each lie in a geodesic of length $\operatorname{inj}(M)$ connecting p to q. Denote these geodesics by γ_x and γ_y . If $\gamma_x = \gamma_y$, then clearly $\operatorname{d}(x, y) \leq \operatorname{inj}(M)$. Otherwise x and y lie in the embedded circle $\gamma_x \cup \gamma_y \subset M$ of length $2 \operatorname{inj}(M)$, whence $\operatorname{d}(x, y) \leq \operatorname{inj}(M)$. In either case, $\operatorname{diam}(M) = \operatorname{d}(x, y) \leq \operatorname{inj}(M)$, concluding the proof.

Theorem 3. Let M be a simply connected manifold with $\sec \geq 1$. If for each unit speed geodesic $\gamma : \mathbb{R} \to M$, $\gamma(\pi/2)$ is the first conjugate point to $\gamma(0)$ along γ , then M is isometric to a compact rank one symmetric space.

Proof. The hypotheses imply that $\operatorname{conj}(M) = \pi/2$ and that $\operatorname{rad}(M) \leq \pi/2$ since geodesics do not minimize beyond their first conjugate point. By proposition 1, $\pi/2 = \operatorname{conj}(M) = \operatorname{inj}(M) \leq \operatorname{rad}(M) \leq \pi/2$ so that $\operatorname{rad}(M) = \pi/2$ as well. The conclusion follows from theorem 2.

References

- [AbMe97] U. Abresch and W. T. Meyer, Pinching below 1/4, injectivity radius, and conjugate radius J. Diff. Geom. 40 (1994), no. 3, 643-691.
- [BaThZi82] W. Ballmann, G. Thorbergsson, and W. Ziller, *Closed geodesics on positively curved manifolds*, Ann. of Math. (2) **116** (1982), no. 2, 213-247.
- [Ber60] M. Berger, Les variétés Riemanniennes 1/4-pincées, Ann. Scuola Norm. Sup. Pisa (3) 14 (1960), 161-170.
- [Ber78] M. Berger, Blaschke's conjecture for spheres, Appendix D in [Bes78].
- [Bes78] A. L. Besse, Manifolds all of whose geodesics are closed, Springer-Verlag, Berlin-Heidelberg-New York, 1978.
- [BöWi08] C. Böhm and B. Wilking, Manifolds with positive curvature operators are space forms, Ann. of Math. (2) 167 (2008), no. 3, 1079-1097.
- [BrSc09] S. Brendle and R. Schoen, Manifolds with 1/4-pinched curvature are space forms, J. Amer. Math. Soc. 22 (2009), no. 1, 287-307.
- [BrSc08] S. Brendle and R. Schoen, Classification of manifolds with weakly 1/4-pinched curvatures, Acta Math. 200 (2008), no.1, 1-13.
- [CaTa07] J. Cao and H. Tang, An intrinsic proof of the Gromoll-Grove diameter rigidity theorem, Commun. Contemp. Math. 9 (2007), no. 3, 401-419.
- [ChGr80] J. Cheeger and D. Gromoll, On the lower bound for the injectivity radius of 1/4-pinched manifolds, J. Diff. Geom. 15 (1980), no. 3, 437-442.
- [ChEb75] J. Cheeger and D. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland Mathematical Library, Vol. 9, 1975.
- [doCa92] M. do Carmo, *Riemannian Geometry*, Translated from the second Portuguese edition by Francis Flaherty. Mathematics: Theory and Applications. Birkhäuser Boston, Inc., Boston, MA, 1992.
- [GrGr87] D. Gromoll and K. Grove, A generalization of Berger's rigidity theorem for positively curved manfields, Ann. Sci. École Norm. Sup. (4) **20** (1987), no. 2, 227-239.

- [GrPe93] K. Grove and P. Petersen, A radius sphere theorem, Invent. Math. 112 (1993), no. 3, 577-583.
- [GrSh77] K. Grove and K. Shiohama, A generalized sphere theorem, Ann. of Math. (2) 106 (1977), no. 2, 201-211.
- [Kaz78] J. Kazdan, An inequality arising in geometry, Appendix E in [Bes78].
- [Kli61] W. Klingenberg, Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung, Comment. Math. Helv. **35** (1961), 47-54.
- [KlSa80] W. Klingenberg and T. Sakai, Injectivity radius for 1/4-pinched manifolds, Arch. Math. (Basel) 34 (1980), no.4, 371-376.
- [NiWo07] L. Ni and J. Wolfson, Positive complex sectional curvature, Ricci flow and the differential sphere theorem, Preprint. arXiv: math.DG 0706.0332.
- [PeTa09] P. Petersen and T. Tao, Classification of almost quarter-pinched manifolds, Proc. Amer. Math. Soc. 137 (2009), no.7, 2437-2440.
- [Rch51] H. E. Rauch, A contribution to differential geometry in the large, Ann. of Math. (2) 54 (1951), 38-55.
- [ShSpWi05] K. Shankar, R. Spatzier, and B. Wilking, Spherical rank rigidity and Blaschke manifolds, Duke Math. J.. 128 (2005), no.1, 65-81.
- [ShYa89] K. Shiohama and T. Yamaguchi, Positively curved manifolds with restricted diameters, Geometry of Manifolds (Matsumoto, 1988), 345-350, Perspect. Math. 8, Academic Press, Boston, MA, 1989.
- [Wa04] Q. Wang, On the geometry of positively curved manifolds with large radius, Illinois J. Math. 48 (2004), no.1, 89-96.
- [Wei74] A. Weinstein, On the volume of manifolds all of whose geodesics are closed,
 J. Diff. Geom. 9 (1974), 513-517.
- [Wi96] F. Wilhelm, The radius rigidity theorem for manifolds of positive curvaturre, J. Diff. Geom. 44 (1996), no. 3, 634-665.
- [Wi01] B. Wilking, Index parity of closed geodesics and rigidity of Hopf fibrations, Invet. Math. 144 (2001), no. 2, 281-295.
- [Xia06] C. Xia, A round sphere theorem for positive sectional curvature, Compos. Math. **142** (2006), no. 5, 1327-1331
- [Xia09] C. Xia, Rigidity for closed manifolds with positive curvature, Ann. Glob. Anal. Geom. **36** (2009), 105-110.
- [Ya80] C. T. Yang, Odd-dimensional wiedersehen manifolds are spheres, J. Diff. Geom. 15 (1980), no. 1, 91-96.

Benjamin Schmidt, Michigan State University, schmidt@math.msu.edu