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Abstract. Let M denote a complete simply connected Riemann-
ian manifold with all sectional curvatures ≥ 1. The purpose of this
paper is to prove that when M has conjugate radius at least π/2,
its injectivity radius and conjugate radius coincide. Metric char-
acterizations of compact rank one symmetric spaces are given as
applications.

1. Introduction

The Rauch-Berger-Klingenberg sphere theorem has inspired many
results in the study of complete, connected, and positively curved man-
folds [Rch51, Ber60, Kli61].

Theorem (Rauch-Berger-Klingenberg). If M is a simply connected
manifold with 1 ≤ sec < 4, then M is homeomorphic to a sphere.

The simply connected compact rank one symmetric spaces satisfy
1 ≤ sec ≤ 4. Consequently, the above hypothesis that sectional cur-
vatures are positive and strictly quarter pinched cannot be relaxed to
allow quarter pinched positive sectional curvatures. Berger’s rigidity
theorem [Ber60] classifies manifolds with positive quarter pinched sec-
tional curvatures.

Theorem (Berger). If M is a simply connected manifold with 1 ≤
sec ≤ 4, then M is homeomorphic to a sphere or isometric to a compact
rank one symmetric space.

The problem of improving homeomorphism to diffeomorphism in
the above two theorems has very recently been resolved using Ricci
flow (c.f. [BöWi08, BrSc09, BrSc08, NiWo07, PeTa09]). An impor-
tant step in the original proofs involves estimating the injectivity radii
of manifolds with quarter pinched positive sectional curvatures. In
[Kli61, ChGr80, KlSa80], it is proved that if M satisfies the hypotheses
of Berger’s theorem, then its injectivity radius inj(M) and conjugate
radius conj(M) are equal. By the Rauch comparison theorem, man-
ifolds with sec ≤ 4 satisfy conj(M) ≥ π/2. In this paper, the upper
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curvature bound assumption is replaced by a lower bound on the con-
jugate radius.

Proposition 1. Let M be a simply connected manifold with sec ≥ 1.
If conj(M) ≥ π/2, then inj(M) = conj(M).

Proposition 1 is applied to prove three rigidity results. The first
generalizes Berger’s rigidity theorem.

Theorem 1. Let M be a simply connected manifold with sec ≥ 1. If
conj(M) ≥ π/2, then M is homeomorphic to a sphere or isometric to
a compact rank one symmetric space.

Theorem 1 is an easy consequence of propostion 1 and earlier gener-
alizations of the sphere and Berger rigidity theorems [GrSh77, GrGr87,
Wi01]. As with the injectivity radius, conjugate radius, and diameter,
the radius of a manifold rad(M) has played an important role in rigid-
ity results for positvely curved manifolds (c.f. [GrPe93, ShYa89, Wa04,
Wi96, Xia09]). The second application of propositon 1 generalizes the
following theorem due to Xia [Xia06].

Theorem (Xia). If M satisfies sec ≥ 1 and rad(M) > π/2, then
conj(M) ≤ rad(M) with equality if and only if M is isometric to a
constant curvature sphere.

Note that manifolds M with sec ≥ 1 and rad(M) > π/2 are home-
omorphic to a sphere by [GrSh77]. In particular, such manifolds are
simply connected.

Theorem 2. If M is simply connected and satisfies sec ≥ 1 and
rad(M) ≥ π/2, then conj(M) ≤ rad(M) with equality if and only if
M is isometric to a compact rank one symmetric space.

A final application is motivated by the Shankar-Spatzier-Wilking
spherical rank rigidity theorem [ShSpWi05].

Theorem (Shankar-Spatzier-Wilking). Let M be a simply connected
manifold with sec ≤ 1. If for each unit speed geodesic γ : R→M , γ(π)
is the first conjugate point to γ(0) along γ, then M is isometric to a
compact rank one symmetric space.

Theorem 3. Let M be a simply connected manifold with sec ≥ 1. If for
each unit speed geodesic γ : R→M , γ(π/2) is the first conjugate point
to γ(0) along γ, then M is isometric to a compact rank one symmetric
space.
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2. Preliminaries

This section collects together preliminary material and notation.
General references about Riemannian manifolds include [ChEb75], and
[doCa92] though our notation differs in parts. Throughout, M denotes
a closed Riemannian manifold and π : TM → M its tangent bundle.
Let TpM denote the fiber of TM above a point p ∈M and for r > 0, let
Br(0) ⊂ TpM denote the open r-ball centered at 0. Let SpM ⊂ TpM
denote the unit sphere.

The Riemannian metric induces an exponential map exp : TM →M .
Its restriction to the tangent space TpM at a point p will be denoted by
expp : TpM → M . The metric also induces a Riemannian connection
denoted by ∇. This connection is used to define the curvature tensor
R by

R(X, Y, Z) = ∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z

where X, Y , and Z are vector fields on M . Finally, let d : M×M → R
denote the distance function on M .

2.1. Metric invariants. A critical point v ∈ TpM of expp is defined
to be a conjugate vector. Its multiplicity is defined to be the dimension
of the kernel of the derivative map of expp at the vector v. The point
q = expp(v) is said to be a conjugate point to p along the geodesic
γ(t) = expp(tv) and its multiplicity as a conjugate point is defined
to be the multiplicity of v as a conjugate vector. Equivalently, q is a
conjugate point to p along γ if there is a nonzero normal Jacobi field
J(t) along γ with J(0) = J(1) = 0. Jacobi fields are vector fields along
γ satisfying the second order differential equation

J ′′ +R(γ̇, J)γ̇ = 0.

They are determined by their initial value J(0) and initial derivative
J ′(0).

Let TConj(p) ⊂ TpM denote the locus of conjugate vectors in TpM .
The conjugate radius of M at a point p is defined by

conj(p) = sup{r > 0 | TConj(p) ∩Br(0) = ∅}

= sup{r > 0 | expp |Br(0) has full rank}
and the conjugate radius of M is defined by

conj(M) = inf{conj(p) | p ∈M}.

By the Cartan-Hadamard theorem, manifolds with a point p satis-
fying conj(p) = ∞ have universal covers diffeomorphic to Euclidean
space. By the Bonnet-Myers theorem, manifolds with sec ≥ 1 have
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compact universal covers and therefore finite conjugate radius at each
point.

The radius of M at a point p is defined by rad(p) = maxx∈M d(p, x).
The radius of M is defined by rad(M) = minp∈M rad(p) and the diam-
eter of M is defined by diam(M) = maxp∈M rad(p).

For a unit vector v ∈ SpM , the geodesic γ(t) = expp(tv) satisfies
d(p, expp(tv)) = t for small t > 0. Define µ : SpM → R by

µ(v) = max{t > 0 | d(p, γ(t)) = t}.
The vector µ(v)v ∈ TpM is said to be a cut vector. The function
v 7→ µ(v) is a continuous function on the unit sphere SpM . It achieves
its minimum value, the injectivity radius of M at the point p, denoted
by inj(p) > 0. Equivalently,

inj(p) = max{r > 0 | expp |Br(0) is a diffeomorphism onto its image}.
The injectivity radius of M is defined by

inj(M) = min{inj(p) | p ∈M}.
The inequalites inj(M) ≤ rad(M) ≤ diam(M) always hold. Geodesics

do not minimize beyond their first conjugate point so that inj(M) ≤
conj(M). In fact, the injectivity radius equals the minimium of the
conjugate radius and half the length of a shortest closed geodesic in
M .

Denote the locus of cut vectors in TpM by TCut(p). Its image in
M under expp, denoted by Cut(p), is the cut locus of p in M . Much
of the topology of M is contained in the cut locus of a point p ∈ M .
To be more precise, note that each point q ∈ M \ {p} has a unique
expression as q = expp(tqvq) for some vq ∈ SpM and 0 < tq < µ(vq).
Then the map

r : M \ {p} × [0, 1]→M \ {p}
defined by

(q, s) 7→ expp([tq + s(µ(vq)− tq)]vq)
is a strong deformation retraction of M \ {p} to Cut(p). In particular,
Cut(p) is homotopy equivalent to M \ {p}.

2.2. Indices of geodesics. A reference for this section is [BaThZi82,
Section 1], though our notation differs slightly.

Let Λ = Λ(M) denote the path space of M . It consists of piecewise
smooth curves c : [0, 1] → M . The energy function E : Λ → R is
defined by

E(c) =

∫ 1

0

〈ċ, ċ〉 dt
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for c ∈ Λ. Critical points of E are point maps and geodesic segments
parameterized proportionally to arc length.

Given a geodesic γ ∈ Λ, let TγΛ denote the space of piecewise smooth
normal vector fields V (t) along γ with V (0) = V (1) = 0. The index
form is the symmetric bilinear IΛ : TcΛ× TcΛ→ R defined by

IΛ(X, Y ) =

∫ 1

0

〈X ′, Y ′〉 − 〈R(γ̇, X)γ̇, Y 〉 dt

for vector fields X, Y ∈ TγΛ.
For a fine enough subdivision 0 = t0 < t1 < · · · < tn = 1 of [0, 1], the

index form IΛ is positive definite on the subspace P ⊂ TγΛ consisting
of normal vector fields V (t) with V (ti) = 0 for each i = 0, . . . , n.
The orthogonal complement of P in TγΛ with respect to IΛ is the finite
dimensional space of piecewise Jacobi fields : vector fields V ∈ TγΛ such
that the restriction of V to [ti, ti+1] is Jacobi for each i = 0, . . . , n− 1.
Thus, the index and nullity of a IΛ are both finite.

The index of γ as a geodesic segment, denoted by indΛ(γ), is defined
to be the index of the form IΛ and the nullity of γ as a geodesic segment,
denoted by nullΛ(γ), is defined to be the nullity of IΛ. By the Morse
index theorem, indΛ(γ) is equal to the number of points γ(t) conjugated
to γ(0) along γ with t ∈ (0, 1) and counted with multiplicities.

The index of a smoothly closed geodesic is defined analogously by
considering variations of the closed geodesic in the free loop space of M .
Let Ω = Ω(M) denote the free loop space of M . It consists of piecewise
smooth curves c : [0, 1] → M with c(0) = c(1). The energy function
defined on Λ restricts to the energy function E : Ω → R. Its critical
points are point maps and smoothly closed geodesics parameterized
proportionally to arc length.

Given a closed geodesic γ ∈ Ω, let TγΩ denote the space of piecewise
smooth normal vector fields V (t) along γ with V (0) = V (1). The index
form IΩ : TγΩ × TγΩ → R is defined by the same formula as IΛ. As
above, the index and nullity of IΩ are both finite. The index of γ as a
closed geodesic, denoted by indΩ(γ), is defined to be the index of the
form IΩ and the nullity of γ as a closed geodesic, denoted by nullΩ(γ),
is defined to be the nullity of IΩ.

The nullspace of IΩ

null(IΩ) = {V ∈ TγΩ | IΩ(V,X) = 0 for allX ∈ TγΩ}

consists of periodic normal Jacobi fields along γ. As Jacobi fields are
determined by their initial value and derivative, these are normal Jacobi
fields J(t) along γ satisfying J(0) = J(1) and J ′(0) = J ′(1).
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Note that since TγΛ ⊂ TγΩ, indΛ(γ) ≤ indΩ(γ). The difference
indΩ(γ) − indΛ(γ) is known as the concavity of γ and its calculation
involves the Poincare map. Let L = γ̇(0)⊥. The Poincare map is the
linear map

Θ : L× L→ L× L
defined by Θ(v, w) = (J(1), J ′(1)), where J(t) is the normal Jacobi field
along γ with initial conditions J(0) = v and J ′(0) = w. When Θ = Id
the concavity is zero so that indΛ(γ) = indΩ(γ) (c.f. [BaThZi82, pg.
219]).

This section concludes with the statement of a simple lemma. Let
V be a finite dimensional real vector space and I : V × V → R a
symmetric bilinear form.

Lemma 1. Suppose that I has index one and that X is a subspace of
V such that I(x, x) ≤ 0 for each x ∈ X. Then

dim(X ∩ null(I)) ≥ dim(X)− 1.

A proof is readily obtained after diagonalizing I.

2.3. Sublevels of E. For a > 0, let Ω<a (resp. Ω≤a) denote the subset
of curves c ∈ Ω with E(c) < a (resp. E(c) ≤ a). This section contains
two lemmas from [ChGr80] concerning the components of these sublevel
sets. Some notation is needed first.

A continuous curve c̃ : [0, 1]→ TM is said to be vertical if c = π◦ c̃ is
constant. Let P denote the set of all continuous curves c : [0, 1] → M
and P0 ⊂ P the subset of closed curves. Let P̃ denote the set of
all vertical curves in TM emanating from the zero section and P̃0 ⊂
P̃ the subset of closed curves. Endow P , P̃ , and their subsets with
the uniform topology. Let Exp : P̃ → P denote the continuous map
induced by exp : TM → M . Its image is defined to be the set of
liftable curves in M and a curve c̃ ∈ P̃ is said to be a lift of the curve
c = Exp(c̃).

A lift c̃ ⊂ TpM is said to be a regular lift if expp has full rank at c̃(t)

for each t ∈ [0, 1]. Let Q̃ denote the open subset of P̃ consisting of
regular lifts. The restriction of Exp to Q̃ is a homeomorphism onto its
image Q = Exp(Q̃). Let Q̃0 = P̃0 ∩ Q̃ denote the set of closed regular
lifts. The map Exp maps Q̃0 onto an open subset Q0 of P0.

Finally, for a curve c ∈ P , let c 1
2

and c− 1
2

be the curves defined by

c 1
2
(t) = c(1

2
t) and c− 1

2
(t) = c(1− 1

2
t).

The next two lemmas are lemmas 1 and 3 from [ChGr80] respectively.
They will be applied with r = conj(M).
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Lemma 2. Suppose for some r > 0 and all p ∈ M , expp is nonsin-
gular on the open ball Br(0) ⊂ TpM . Let c ∈ P0 be in the closure of

Exp(P̃0)∩Ω≤4r2. Then either c ∈ Q0 (and thus is not a closed geodesic
if nonconstant), or c 1

2
and c− 1

2
are geodesics of length r with conjugate

endpoints. Furthermore C = Q0 ∩ Ω<4r2 is a connected component of
Ω<4r2.

Lemma 3. Assume the hypotheses of lemma 2 and furthermore that
any closed geodesic c ∈ Q0 ∩Ω≤4r2 (necessarily of length 2r) has index

at least two. Then Q0 ∩ Ω≤4r2 is the closure of Q0 ∩ Ω<4r2 and is a
connected component of Ω≤4r2

3. Proofs of main results

The main new technical observation in this paper consists of the
following lemma.

Lemma 4. Assume that M is an oriented Riemannian manifold with
sec ≥ 1 and n = dim(M) odd. If γ ⊂ M is a closed geodesic of length
π, then the index of γ in the free loop space Ω(M) is not one.

Proof. The proof is by contradiction. Assume that γ ⊂ M is a closed
geodesic of length π with indΩ(γ) = 1. Let v be a tangent vector to γ
of length π and fix the parameterization of γ defined by γ(t) = exp(tv).
Let L(t) = γ̇(t)⊥ and let L = L(0). For each t ∈ R, parallel translation
along γ defines an orientation preserving isometry Pt : L → L(t). Let
P = P1 : L→ L.

The first step is to show that P = − Id. Consider the (n − 1)-
dimensional space of vector fields along γ defined by

X = {sin(πt)E(t) |E(t) is a unit normal parallel field along γ}.
Note that X ⊂ TγΩ and that for each V ∈ X,

IΩ(V, V ) =

∫ 1

0

π2 cos2(πt)− π2 sin2(πt) sec(γ̇, E)(t) dt

≤
∫ 1

0

π2 cos2(πt)− π2 sin2(πt) dt = 0

since sec ≥ 1. As indΩ(γ) = 1, lemma 1 implies that

dim(X ∩ null(IΩ)) ≥ dim(X)− 1 = n− 2.

A vector field V (t) = sin(πt)E(t) ∈ X ∩null(IΩ) is a periodic Jacobi
field. In particular, V ′(0) = V ′(1), whence E(0) = −E(1). Therefore
−1 is an eigenvalue for P : L→ L with multiplicity at least n−2. Since
dim(L) = n − 1 is even and P : L → L is an orientation preserving
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isometry, −1 must have multiplicity n − 1, concluding the proof that
P = − Id.

Let E(t) be an arbitrary unit normal parallel field along γ. Consider
the two dimensional space of vector fields along γ defined by

Y = {(a cos(πt) + b sin(πt))E(t) | a, b ∈ R}.
As P = − Id we have that V (0) = V (1) for each vector field V ∈ Y .
Therefore, Y is a subspace of TγΩ. Since sec ≥ 1,

I(V, V ) =

π2

∫ 1

0

(−a sin(πt) + b cos(πt))2 − (a cos(πt) + b sin(πt))2 sec(γ̇, E)(t) dt

≤ π2

∫ 1

0

(−a sin(πt) + b cos(πt))2 − (a cos(πt) + b sin(πt))2 dt = 0

with equality if and only if sec(γ̇, E)(t) ≡ 1. As indΩ(γ) = 1, lemma 1
implies that

dim(Y ∩ null(IΩ)) ≥ dim(Y )− 1 = 1.

In particular, there exists a nonzero field V ∈ Y with I(V, V ) = 0
so that sec(γ̇, E) ≡ 1. It follows easily that the space Y consists of
periodic Jacobi fields.

The fact that the unit parallel field E(t) was arbitrary in the last
paragraph has two consequences. First, the Poincare map

Θ : L× L→ L× L
is the identity map. Therefore, indΩ(γ) = indΛ(γ). Secondly, all normal
sectional curvatures of γ are one. The Rauch comparison theorem then
implies that γ(t) is not conjugated to γ(0) for any 0 < t < 1. By the
Morse index theorem indΛ(γ) = 0. In conclusion, 0 = indΛ(γ) =
indΩ(γ) = 1, a contradiction. �

Next is the proof of proposition 1. The proof is well known given
lemma 4 and follows the line of reasoning in [ChGr80] closely.

Proposition 1. Let M be a simply connected manifold with sec ≥ 1.
If conj(M) ≥ π/2, then inj(M) = conj(M).

Proof. The proof is by contradiction. Assume that inj(M) < conj(M).
As inj(M) always equals the smaller of conj(M) and half the length of
a shortest closed geodesic in M , there is a closed geodesic τ ⊂ M of
length 2 inj(M).

A standard argument implies that the geodesic τ has index zero in
Ω. To see this, fix p ∈ τ and let p′ ∈ τ be the point at distance
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inj(M) from p. The geodesic τ consists of two subsegments τ1 and τ2

connecting p to p′ and of length inj(M). If indΩ(τ) > 0, then there is a
third minimizing geodesic τ3 joining p to p′ and meeting τ orthogonally
at the point p′ (c.f. the proof of [doCa92, Proposition 3.4, pg. 281]).
Since inj(M) < conj(M), the points p and p′ are not conjugated along
either of the segments γ1 and γ3. As these segments do not meet
smoothly at p′ it is possible to find a point p′′ ∈ Cut(p) nearer to p
than p′ (c.f. [doCa92, Proposition 2.12, pg. 274]). This contradicts
d(p, p′) = inj(M).

If dim(M) is even, Synge’s trick implies that indΩ(τ) > 0, a contra-
diction (c.f. the proof of [doCa92, Propositon 3.4, pg. 274]). From now
on, assume that dim(M) is odd and at least three.

As M is simply connected, τ is null-homotopic. The Abresch-Meyer
long homotopy lemma [AbMe97, Lemma 4.1] implies that every null-
homotpy of τ passes through a curve of length at least 2 conj(M) ≥ π.
It follows that for e0 = 4 conj(M)2 the space Ω<e0 is disconnected.

Since sec ≥ 1, any closed geodesic of energy greater than e0 has index
at least dim(M) − 1 ≥ 2 in Λ and hence in Ω (c.f. [doCa92, Lemma
3.2, pg 276]). A consequence of this fact and the simple connectivity
of M is that Ω≤e0 is connected (c.f. [ChGr80, Lemma 4, pg. 440]).
This will be used to argue that Ω<e0 is connected as well, the desired
contradiction.

The first step is to see that each closed geodesic γ ∈ Q0 ∩Ω≤e0 (nec-
essarily of length 2 conj(M)) has index at least two in Ω. If conj(M) >
π/2, then this follows immediately from the remark at the beginning
of the last paragraph. Otherwise, conj(M) = π/2 and γ has length π.
By lemma 2, indΩ(γ) ≥ 1 and by lemma 4, indΩ(c) ≥ 2, concluding
this step.

Now lemma 3 implies that Q0 ∩Ω≤e0 is the closure of Q0 ∩Ω<e0 and
is a connected component of Ω≤e0 . As Ω≤e0 is connected, it follows that
Q0∩Ω≤e0 = Ω≤e0 . In particular Q0∩Ω<e0 is dense in Ω≤e0 and hence in
Ω<e0 . By lemma 2, Q0 ∩Ωe0 is a connected component of Ω<e0 . These
last two remarks imply that Ω<e0 is connected, a contradiction.

�

Theorem 1 is an easy consequence of proposition 1 and the next two
theorems. The first theorem is due to Grove-Shiohama [GrSh77] and
is a generalization of the sphere theorem.

Theorem 4 (Diameter sphere theorem). If M is a manifold with sec ≥
1 and diam(M) > π/2, then M is homeomorphic to a sphere.
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The second theorem is due to Gromoll-Grove-Wilking [GrGr87, Wi01].
It is a generalization of Berger’s rigidity theorem. For a recent alter-
native proof, see [CaTa07].

Theorem 5 (Diameter rigidity theorem). If M is a simply connected
manifold with sec ≥ 1 and diam(M) = π/2, then M is homeomorphic
to a sphere or isometric to a compact rank one symmetric space.

Theorem 1. Let M be a simply connected manifold with sec ≥ 1.
If conj(M) ≥ π/2, then M is homeomorphic to a sphere or isometric
to a compact rank one symmetric space.

Proof. Proposition 1 implies that inj(M) = conj(M) ≥ π/2. Therefore
diam(M) ≥ inj(M) ≥ π/2. The conclusion follows from the diameter
sphere and rigidity theorems 4 and 5. �

Theorem 2. If M is simply connected and satisfies sec ≥ 1 and
rad(M) ≥ π/2, then conj(M) ≤ rad(M) with equality if and only if M
is isometric to a compact rank one symmetric space.

Proof. The proof of the inequality conj(M) ≤ rad(M) is by contradic-
tion. If conj(M) > rad(M) ≥ π/2, then inj(M) = conj(M) > rad(M)
by proposition 1. This is a contradiction since inj(M) ≤ rad(M) always
holds.

Now consider the equality case conj(M) = rad(M) ≥ π/2. Theorem
1 implies that M is isometric to a compact rank one symmetric space
or homeomorphic to a sphere. Moreover, proposition 1 implies that
inj(M) = conj(M) = rad(M). Therefore, the conclusion follows from
the following lemma.

Lemma. Assume that M is homeomorphic to a sphere and that inj(M) =
rad(M). Then M is isometric to a constant curvature sphere.

By the resolution of the Blaschke conjecture for spheres (c.f. [Ber78],
[Kaz78], [Wei74], and [Ya80]), a Riemannian metric on the sphere with
inj(M) = diam(M) is isometric to a constant curvature sphere. It
suffices to prove that diam(M) ≤ inj(M).

Choose a point p ∈M with rad(p) = rad(M). As inj(M) = rad(M),
all points q ∈ Cut(p) are at distance inj(M) from p. In the language
of [Bes78, Definition 5.22, pg. 132], M is said to have spherical cut
locus at the point p. By [Bes78, Proposition 5.44, pg. 138] and [Bes78,
Proposition 5.39, pg. 136], it follows that Cut(p) is a smooth closed
submanifold of M . Since Cut(p) is homotopy equivalent to Rn via the
strong deformation retraction from M \ {p} to Cut(p), it follows that
Cut(p) = {q} for some q ∈M .
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Choose points x, y ∈M such that d(x, y) = diam(M). Then x and y
each lie in a geodesic of length inj(M) connecting p to q. Denote these
geodesics by γx and γy. If γx = γy, then clearly d(x, y) ≤ inj(M). Oth-
erwise x and y lie in the embedded circle γx∪γy ⊂M of length 2 inj(M),
whence d(x, y) ≤ inj(M). In either case, diam(M) = d(x, y) ≤ inj(M),
concluding the proof.

�

Theorem 3. Let M be a simply connected manifold with sec ≥ 1. If
for each unit speed geodesic γ : R → M , γ(π/2) is the first conjugate
point to γ(0) along γ, then M is isometric to a compact rank one
symmetric space.

Proof. The hypotheses imply that conj(M) = π/2 and that rad(M) ≤
π/2 since geodesics do not minimize beyond their first conjugate point.
By proposition 1, π/2 = conj(M) = inj(M) ≤ rad(M) ≤ π/2 so that
rad(M) = π/2 as well. The conclusion follows from theorem 2. �
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