
Mth829

Solutions to HW III
5) Find the following limits

a) limx→0
e−(1+x)1/x

x .
Note that

f(x) =

{
1
x log(1 + x) x > −1, x 6= 0
1 x = 0

is continuous (since ln(1) = 0 and d log(1 + x)/dx = 1/1 + x = 1 at x = 0). Furthermore,
from the power series for log,

log(1 + x) =
∞∑
n=1

1
n

(−1)n−1xn, |x| < 1,

we see that f has a convergent power series,

f(x) =
∞∑
n=1

1
n

(−x)n−1,

for |x| < 1. In particular, f is differentiable. However the limit to be computed is just

− d

dx
ef(x)

∣∣∣∣
x=0

= −ef(0)f ′(0) =
e

2
.

b) limn→∞
n

logn [n1/n − 1]
Since n1/n = e(logn)/n, and (log n)/n→ 0 as n→∞, what we are looking at is just

lim
h→0

eh − 1
h

=
d

dx
ex
∣∣∣∣
x=0

= 1.

c) limx→0
tanx−x
x(1−cosx)

Let’s use the power series for sinx and cosx. First write

tanx− x
x(1− cosx)

=
sinx
x − cosx

cosx(1− cosx)
.

Since cosx→ 1 as x→ 0 we may equally well consider the limit

lim
x→0

sinx
x − cosx
1− cosx

.
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Now

sinx = x− 1
6
x3 + · · · = x

∞∑
n=0

(−1)n
1

(2n+ 1)!
x2n

while

cosx = 1− 1
2
x2 + · · · =

∞∑
n=0

(−1)n
1

(2n)!
x2n.

Thus

sinx
x
−cosx =

∞∑
n=1

[
(−1)n

1
(2n+ 1)!

− (−1)n
1

(2n)!

]
x2n = x2

[
1
3

+
∞∑
n=2

(−1)n
[

1
(2n+ 1)!

− 1
(2n)!

]
x2n−2

]

and

1− cosx = x2

[
1
2
−
∞∑
n=2

(−1)n
1

(2n)!
x2n−2

]
.

Thus

lim
x→0

tanx− x
x(1− cosx)

= lim
x→0

sinx
x − cosx
1− cosx

=
1
3
1
2

=
2
3
.

d) limx→0
x−sinx
tanx−x This is very similar to (c).

6) Suppose f(x)f(y) = f(x+ y) for all real x and y. a) Assuming f is differentiable and

not zero, prove that
f(x) = ecx

where c is constant.
Note that f(0) = 1, since f(x) = f(x)f(0) and f(x) 6= 0 for some x. Since f is

differentiable,
c = f ′(0)

exists. For x 6= 0 we have

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

f(x)
f(h)− 1

h
= f(x)f ′(0) = cf(x).

Thus f ′(x) = cf(x). It follows that d
dxe
−cxf(x) = 0 so

f(x) = f(0)ecx = ecx.

b) Prove the same thing, assuming only that f is continuous.
This is trickier. Note that we still have f(0) = 1. Also f(x) > 0 for all x since

f(x) = f(x/2)2. Let
c = log f(1).

It follows that
f(n) = enc,
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for all n ∈ Z. Also for n,m ∈ Z, m 6= 0, we have

f(n/m)m = f(n) = enc,

so
f(n/m) = enc/m

since f(n/m) ≥ 0. Thus
f(x) = ecx x ∈ Q.

By continuity, we see that f(x) = ecx for all x ∈ R.

9) a) Put sN = 1 + 1
2 + · · ·+ 1

N . Prove that

lim
N→∞

(sN − logN)

exists.
Write

logN =
N−1∑
k=1

log k + 1− log k =
N−1∑
k=1

log
(

1 +
1
k

)
.

For each 0 < x ≤ 1, the series

log(1 + x) =
∞∑
n=1

(−1)n+1 1
n
xn

converges. Thus for all k,

1
k
− log

(
1 +

1
k

)
=
∞∑
n=2

(−1)n
1
n

1
kn
.

Since the series is alternating with terms of decreasing magnitude,

0 ≤ 1
k
− log

(
1 +

1
k

)
≤ 1

2k2
.

Thus

SN − logN =
1
N

+
N−1∑
k=1

[
1
k
− log

(
1 +

1
k

)]
,

where the sum is a sum of positive terms bounded in magnitude by
∑N−1

k=1 1/(2k2) and
thus converges.

b) Roughly how large must m be so that N = 10m satisfies sN > 100?
To get SN > 100 more or less we should have logN > 100 so m log 10 > 100. Since

log 10 ≈ 2.3 (log denotes the natural log) we should have m roughly 10/2.3 ≈ 4 or larger.
We have to some between 10, 000 and 100,000 terms of the harmonic series to get over
100. The moral is,

∑ 1
n diverges but very very slowly.

12) Suppose 0 < δ < π, f(x) = 1 if |x| ≤ δ, f(x) = 0 if δ < |x| ≤ 2π, and f(x+2π) = f(x)
for all x.
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a) Compute the Fourier coefficients of f .

cn =
1

2π

∫ π

−π
f(x)e−inxdx =

1
2π

∫ δ

−δ
e−inxdx =

{
δ
π if n = 0,
sin(nδ)
nπ if n 6= 0.

b) Conclude that
∑∞

n=1
sin(nδ)
n = π−δ

2 (0 < δ < π).
Since f(x) is Lipschitz continuous at 0, Thm. 8.14 applies and we see that

1 =
∞∑

n=−∞
cn =

δ

π
+

1
π

∞∑
n=1

1
n

[sin(nδ)− sin(−nδ)] =
δ

π
+

2
π

∞∑
n=1

sin(nδ)
n

.

The claimed identity follows.

c) Deduce from Parseval’s theorem that

∞∑
n=1

sin2(nδ)
n2δ

=
π − δ

2
.

By Parseval,

δ

π
=

1
2π

∫ π

−π
|f(x)|2dx =

∞∑
n=−∞

c2n =
δ2

π2
+

2
π2

∞∑
n=1

sin2(nδ)
n2

.

Thus

π − δ = 2
∞∑
n=1

sin2(nδ)
n2δ

.

d) Let δ → 0 and prove that ∫ ∞
0

(
sinx
x

)2

dx =
π

2
.

The sum in part (c) can be understood as a Riemann sum for the integral indicated,
with the function evaluated at the right endpoints of the intervals [(n− 1)δ, nδ],

∞∑
n=1

sin2(nδ)
n2δ

=
∞∑
n=1

sin2(nδ)
n2δ2

[nδ − (n− 1)δ].

The result follows.

e) Put δ = π/2 in (c). What do you get?
You get

∞∑
n=0

1
(2n+ 1)2

=
π2

8

since sin2(nπ/2) = 1 if n is odd and = 0 if n is even.
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13) Put f(x) = x is 0 ≤ x < 2π and apply Parseval’s theorem to conclude that

∞∑
n=1

1
n2

=
π2

6
.

Compute the Fourier coefficients,

cn =
1

2π

∫ 2π

0
xe−inx.

We get
c0 = π

, and for n 6= 0 we can integrate by parts

cn =
1

2π

∫ 2π

0
x

(
− 1
in

d

dx
e−inx

)
dx = − 1

in
e−2πin +

1
2πin

∫ 2π

0
e−inxdx =

i

n
.

Thus
∞∑
n=1

1
n2

= −|c0|
2

2
+

1
2

∞∑
n=−∞

|cn|2 = −π
2

2
+

1
4π

∫ 2π

0
x2dx = −π

2

2
+

2π2

3
=
π2

6
.

14) If f(x) = (π − |x|)2 on [−π, π], prove that

f(x) =
π2

3
+
∞∑
n=1

4
n2

cosnx.

and deduce that
∞∑
n=1

1
n2

=
π2

6
,

∞∑
n=1

1
n4

=
π4

90
.

First suppose the indicated series for f converges at all x. Then plugging in x = 0
gives

π2 =
π2

3
+
∞∑
n=1

4
n2
,

so
π2

6
=
∞∑
n=1

1
n2
.

Furthermore, computing the integral of f(x)2 we see that

π4

5
=

1
π

∫ π

0
(π − x)4dx =

1
2π

∫ π

−π
f(x)2dx =

π4

9
+
∞∑
n=1

16
n4

1
2
,

since 1
2π

∫ π
−π cos2(nx)dx = 1

2 and
∫ π
−π cos(nx) cos(mx)dx = 0 if n 6= m. Thus

∞∑
n=1

1
n4

=
1
8

[
1
5
− 1

9

]
π4 =

π4

90
.
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So it remains to show that the series holds for f . Since f is Lipschitz continuous
everywhere, this amounts to computing the Fourier coefficients:

cn =
1

2π

∫ π

−π
(π − |x|)2e−inxdx =

1
π

∫ π

0
(π − x)2 cos(nx).

Thus

c0 =
π2

3
,

and, by integration by parts,

cn =
2
πn

∫ π

0
(π − x) sin(nx)dx, n 6= 0.

By a further, integration by parts,

cn =
2
n2
− 2
πn2

∫ π

0
cos(nx)dx =

2
n2
, n 6= 0.

Thus

(π − |x|)2 = f(x) =
∞∑

n=−∞
cne

inx =
π2

3
+
∞∑
n=1

2
n2

(einx + e−inx) =
π2

3
+
∞∑
n=1

4
n2

cos(nx).
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