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1. Matroids and the External Order

Let M be a matroid on a finite set FE and let

B(M)={BCUFE | Bis a base of M}.

Ex. 1. The vector matroid M = (V,4,-,) has
E = V,6 a finite dimensional vector space over a
finite field, and

B(V) ={B| B is a basis of V}.

2. The graph matroid M = G where G is a con-
nected graph has EF = E(G) (edges of GG) and

B(G) ={E(T) | T is a spanning tree of G}.

Here we will make no distinction between F C FE
and the spanning graph of G with edge set F'.

The independent sets of M are
I(M)={I | I C B for some base B}.
The circuits of M are
C(M) ={C | C a minimal dependent set}.

If M = G then a circuit of M is just a cycle in (.
2



From now on all matroids will be ordered, i.e., there
will be a total order on E. Then F C E has external
active set

Act(F)={e€e E | e=minC where C € C(FUe)}.

EXx. Let G = and F = 3

Then Act(F) = {1}.

The external lattice of the ordered matroid M is
L(M)=B(M)s0

where 0 is a unique minimal element and for bases
A, B € B(M)

A< B iff AC BUACct(B).

Theorem 1 (Las Vergnas) L(M) is a lattice with
unique maximal element I’ which is the lexicograph-
ically largest base (writing sets in increasing order).
L(M) is also ranked with rank function

p(B) = | Act(B)| + 1.
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2. The Order Complex

An abstract simplicial complex is a finite family A
of finite nonempty sets called simplices such that

SeAand RCS (R#0) implies R e A.

Let P be any finite poset with a unique minimal
element O and unigue maximal element 1. The order
complex of P is

A(P)={C | Cis a chain in P\ 0,1}.
Note that this is an abstract simplicial complex since

a subset of a chain is again a chain.

We have the correspondences

P A(P)
1-chain | vertex

3-chain | triangle

If M is an ordered matroid then A(M) = A(L(M)).
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3. The Main Theorem

If M is a matroid on E then the dual of M is the
matroid M™* defined by

B(M*) ={B* | B*=FE — B for some B € B(M)}.

EX. For our example graph E(G) ={0,1,2,3,4} so
B(M) = {012,013,014,024,123,124,034,234}
B(M*) = {34,24,23,13,04,03,12,01}

If M is a matroid on E and F' C E then the restric-
tion of M to F is the matroid M|F defined by
B(M|F)={BnNF | BeB(M) and |BN F| maximum}.
Ex. (cont) Let =7 =234 =1 in L(G)

B(M*|T) = {34,24,23}.
If M is a matroid then the matroid complex [M] is

the abstract simplicial complex whose simplices are
the nonempty independent sets of M.

Ex. (cont) We have a homotopy equivalence

[M*|T] = {34,24,23,2,3,4} ~ S! (a 1-sphere)

Theorem 2 (B & S) IfT'=1 in L(M) then
A(M) ~ [M*|T).



4. Applications

Denote the Mobius function of L(M) by

u(M) = pp (0, T).
So u(M) is the reduced Euler characteristic of A(M)

pu(M) = > (=1)"dim H;(A(M)).
i>—1

The rank of M is rk(M) :=|B| for any B € B(M).
Corollary 3 (B & S) Letrk(M) =1r > 1.

(i) If there is B € B(M) with BC E —T, then
H;(M) = {0} for all i >0 and u(M) = 0.

(ii) If E — S contains a base of M for all S C T but
not for S =T, then

Proof (i) By definition E — B € B(M*) and we're
given E—BDOT. So A(M) ~ [M*|T] ~ (r — 1)-ball
and we are done.

(ii) Similarly A(M) ~ [M*|T] ~ (r —2)-sphere. |



A star is a complete bipartite graph of the form
K1 pn-
Corollary 4 (B & S) Consider a matroid obtained
by ordering the edges of the complete graph K,,
r > 2.

(i) If T' is not a star then then u(K,) = 0.
(i) If T is a star then u(K;) = (=1)"—3.

Proof (i) If T is not a star, then K, — E(T) is con-
nected. So K, — E(T) contains a spanning tree and
thus a base for K,. Now use the previous corollary.
(ii) is similar. |

Note that A(M) is not necessarily shellable: Take
an ordering of F(K,) so that the r — 1 largest edges
all meet at a vertex v. So every edge of E — T is
active and

dim A(Kr) = p(L(Ky))—2 = | Act(T)|-1 = (r ; 1)—1.

But from Corollary 4, A(K,) has non-zero homol-
ogy in dimension r — 3.

Theorem 5 (Bjorner) The complex[M] is shellable
for any matroid M .



5. An Open Problem

Las Vergnas also defined an internal order <y on M
in @ way equivalent to defining

A<;Biff E—B<E—Ain L(M*).

If L;(M) is the resulting lattice, then it is isompor-
phic to the poset dual of L(M*) and so has the
same homology and MoObius function.

One can combine the external and internal orders
as follows. Define the internal-external order <o
on B(M) by

ASIOB iff A< B OI’ASIB.

It follows from results of Las Vergnas that this is a
well-defined partial order.

Question 6 What can be said about the homol-
ogy and Mobius function of the corresponding poset
Lio(M)?
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