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1. Matroids and the External Order

Let M be a matroid on a finite set E and let

B(M) = {B ⊆ E | B is a base of M}.

Ex. 1. The vector matroid M = (V,+, ·, ) has

E = V , a finite dimensional vector space over a

finite field, and

B(V ) = {B| B is a basis of V }.

2. The graph matroid M = G where G is a con-

nected graph has E = E(G) (edges of G) and

B(G) = {E(T ) | T is a spanning tree of G}.

Here we will make no distinction between F ⊆ E

and the spanning graph of G with edge set F .

The independent sets of M are

I(M) = {I | I ⊆ B for some base B}.

The circuits of M are

C(M) = {C | C a minimal dependent set}.

If M = G then a circuit of M is just a cycle in G.
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From now on all matroids will be ordered, i.e., there

will be a total order on E. Then F ⊆ E has external

active set

Act(F ) = {e ∈ E | e = minC where C ∈ C(F ∪ e)}.

Ex. Let G =

{
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Then Act(F ) = {1}.

The external lattice of the ordered matroid M is

L(M) = B(M) ] 0̂

where 0̂ is a unique minimal element and for bases

A, B ∈ B(M)

A ≤ B iff A ⊆ B ∪ Act(B).

Theorem 1 (Las Vergnas) L(M) is a lattice with

unique maximal element T which is the lexicograph-

ically largest base (writing sets in increasing order).

L(M) is also ranked with rank function

ρ(B) = |Act(B)| + 1.
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L(G) = {
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2. The Order Complex

An abstract simplicial complex is a finite family ∆

of finite nonempty sets called simplices such that

S ∈ ∆ and R ⊆ S (R 6= ∅) implies R ∈ ∆.

Let P be any finite poset with a unique minimal

element 0̂ and unique maximal element 1̂. The order

complex of P is

∆(P ) = {C | C is a chain in P \ 0̂, 1̂}.

Note that this is an abstract simplicial complex since

a subset of a chain is again a chain.

We have the correspondences

P ∆(P )

1-chain vertex
2-chain edge
3-chain triangle
k-chain simplex of dimension k − 1

If M is an ordered matroid then ∆(M) = ∆(L(M)).
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∆(G) = {
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3. The Main Theorem

If M is a matroid on E then the dual of M is the

matroid M∗ defined by

B(M∗) = {B∗ | B∗ = E − B for some B ∈ B(M)}.

Ex. For our example graph E(G) = {0,1,2,3,4} so
B(M) = {012,013,014,024,123,124,034,234}
B(M∗) = {34,24,23,13,04,03,12,01}

If M is a matroid on E and F ⊆ E then the restric-

tion of M to F is the matroid M |F defined by

B(M |F ) = {B ∩ F | B ∈ B(M) and |B ∩ F | maximum}.

Ex. (cont) Let F = T = 234 = 1̂ in L(G)

B(M∗|T ) = {34,24,23}.

If M is a matroid then the matroid complex [M ] is

the abstract simplicial complex whose simplices are

the nonempty independent sets of M .

Ex. (cont) We have a homotopy equivalence

[M∗|T ] = {34,24,23,2,3,4} ' S1 (a 1-sphere)

Theorem 2 (B & S) If T = 1̂ in L(M) then

∆(M) ' [M∗|T ].
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4. Applications

Denote the Möbius function of L(M) by

µ(M) := µL(M)(0̂, T ).

So µ(M) is the reduced Euler characteristic of ∆(M)

µ(M) =
∑

i≥−1

(−1)i dim H̃i(∆(M)).

The rank of M is rk(M) := |B| for any B ∈ B(M).

Corollary 3 (B & S) Let rk(M) = r > 1.

(i) If there is B ∈ B(M) with B ⊆ E − T , then

H̃i(M) = {0} for all i ≥ 0 and µ(M) = 0.

(ii) If E − S contains a base of M for all S ⊂ T but

not for S = T , then

H̃i(M) =

{

Z if i = r − 2,
{0} else,

and µ(M) = (−1)r−2.

Proof (i) By definition E − B ∈ B(M∗) and we’re

given E − B ⊇ T . So ∆(M) ' [M∗|T ] ' (r − 1)-ball

and we are done.

(ii) Similarly ∆(M) ' [M∗|T ] ' (r−2)-sphere.
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A star is a complete bipartite graph of the form

K1,n.

Corollary 4 (B & S) Consider a matroid obtained

by ordering the edges of the complete graph Kr,

r > 2.

(i) If T is not a star then then µ(Kr) = 0.

(ii) If T is a star then µ(Kr) = (−1)r−3.

Proof (i) If T is not a star, then Kr −E(T ) is con-

nected. So Kr −E(T ) contains a spanning tree and

thus a base for Kr. Now use the previous corollary.

(ii) is similar.

Note that ∆(M) is not necessarily shellable: Take

an ordering of E(Kr) so that the r−1 largest edges

all meet at a vertex v. So every edge of E − T is

active and

dim∆(Kr) = ρ(L(Kr))−2 = |Act(T )|−1 =
(r − 1

2

)

−1.

But from Corollary 4, ∆(Kr) has non-zero homol-

ogy in dimension r − 3.

Theorem 5 (Björner) The complex [M ] is shellable

for any matroid M .
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5. An Open Problem

Las Vergnas also defined an internal order ≤I on M

in a way equivalent to defining

A ≤I B iff E − B ≤ E − A in L(M∗).

If LI(M) is the resulting lattice, then it is isompor-

phic to the poset dual of L(M∗) and so has the

same homology and Möbius function.

One can combine the external and internal orders

as follows. Define the internal-external order ≤IO

on B(M) by

A ≤IO B iff A ≤ B or A ≤I B.

It follows from results of Las Vergnas that this is a

well-defined partial order.

Question 6 What can be said about the homol-

ogy and Möbius function of the corresponding poset

LIO(M)?
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