Symmetric Functions in Noncommuting Variables

Mercedes H. Rosas
Departamento de Matemáticas
Universidad Simón Bolívar, Apdo. Postal 89000
Caracas, VENEZUELA
mrosas@ma.usb.ve

and

Bruce E. Sagan

Department of Mathematics

Michigan State University

East Lansing, MI 48824-1027, USA
sagan@math.msu.edu

www.math.msu.edu/~sagan

- 0. History
- 1. Symmetric Functions Defined
- 2. Basis Change
- 3. MacMahon Symmetric Functions
- 4. Schur Symmetric Functions
- 5. Open Problems

0. History

1936	M. C. Wolf
1969	G M. Bergman & P. M. Cohn
1972	P. Doubilet
1981	MP. Schützenberger
	& A. Lascoux
1995	I. M. Gelfand, D. Krob,
	A. Lascoux, B. Leclerc,
	V. Retakh, & JI. Thibon
1998	S. Fomin & C. Greene
2000 & 2001	D. Gebhard & BES
2001 & 2002	MHR
2003	MHR & BES
2003	MHR & C. Reutenhauer

1. Symmetric Functions (SFs) Defined

Let $\mathbb{Q}[[\mathbf{x}]]$ and $\mathbb{Q}\langle\langle\mathbf{x}\rangle\rangle$ be the algebras of formal power series in *commuting* and *noncommuting* variables $\mathbf{x} = \{x_1, x_2, \ldots\}$, respectively. Any $g \in \mathfrak{S}_m$ (symmetric group) acts on f in either algebra by

$$gf(x_1, x_2, \ldots) = f(x_{g1}, x_{g2}, \ldots)$$

where gi = i for i > m. Then f is symmetric if it is invariant under all g in all \mathfrak{S}_m . Let $\Lambda(\mathbf{x})$ and $\Pi(\mathbf{x})$ be the subalgebras of $\mathbb{Q}[[\mathbf{x}]]$ and $\mathbb{Q}\langle\langle\mathbf{x}\rangle\rangle$, respectively, of symmetric power series of bounded degree.

Bases for $\Lambda[\mathbf{x}]$ are indexed by integer partitions $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l) \vdash n$. The *monomial SFs* are

$$m_{\lambda} = \sum$$
 (monomials of exponent λ).

Define power sum and elementary SFs by

$$p_n = x_1^n + x_2^n + \cdots$$

 $e_n = \sum$ (square-free monomials of degree n)
and multiplicativity.

Ex. For $\lambda = (3,3,1)$ we have

$$m_{(3,3,1)} = x_1^3 x_2^3 x_3 + x_1^3 x_2 x_3^3 + x_1 x_2^3 x_3^3 + \cdots$$

$$p_{(3,3,1)} = (x_1^3 + x_2^3 + \cdots)^2 (x_1 + x_2 + \cdots)$$

$$e_{(3,3,1)} = (x_1 x_2 x_3 + x_1 x_2 x_4 + \cdots)^2 (x_1 + x_2 + \cdots)$$

Bases for $\Pi[\mathbf{x}]$ are indexed by set partitions $\pi = B_1/B_2/\dots/B_l \vdash [n]$ where $[n] = \{1, \dots, n\}$. Define

$$m_\pi = \sum x_{i_1} x_{i_2} \cdots x_{i_n}$$
 where $i_j = i_k$ iff j,k are in the same block of π .

$$p_\pi = \sum x_{i_1} x_{i_2} \cdots x_{i_n}$$
 where $i_j = i_k$ if j,k are in the same block of π .

$$e_\pi = \sum x_{i_1} x_{i_2} \cdots x_{i_n}$$
 where $i_j \neq i_k$ if j,k are in the same block of π .

Ex. For $\pi = 13/2$ we have

$$m_{13/2} = x_1 x_2 x_1 + x_2 x_1 x_2 + x_1 x_3 x_1 + \cdots,$$

$$p_{13/2} = x_1 x_2 x_1 + x_2 x_1 x_2 + \cdots + x_1^3 + x_2^3 + \cdots$$

$$e_{13/2} = x_1 x_1 x_2 + x_1 x_2 x_2 + x_1 x_3 x_2 + \cdots$$

For
$$\lambda=(\lambda_1,\ldots,\lambda_l)=(1^{c_1},2^{c_2},\ldots,n^{c_n})$$
 let
$$\lambda!=\lambda_1!\lambda_2!\cdots\lambda_l! \quad \text{and} \quad \lambda^!=c_1!c_2!\cdots c_n!$$

The *type* of set partition π is the integer partition

$$\lambda(\pi) = (|B_1|, |B_2|, \dots, |B_l|).$$

Theorem 1 Let $\rho: \mathbb{Q}\langle\langle x \rangle\rangle \to \mathbb{Q}[[x]]$ be the forgetful map and $\lambda(\pi) = \lambda$. Then

$$\rho(m_{\pi}) = \lambda^{!} m_{\lambda},
\rho(p_{\pi}) = p_{\lambda},
\rho(e_{\pi}) = \lambda^{!} e_{\lambda}.$$

In the commuting case, the *complete homogeneous*SFs are defined by multiplicativity and

$$h_n = \sum_{\lambda \vdash n} m_{\lambda}.$$

Ex. For $\lambda = (3,3,1)$ we have

$$h_{(3,3,1)} = (x_1^3 + x_1^2 x_2 + x_1 x_2 x_3 + \cdots)^2 (x_1 + x_2 + \cdots).$$

For noncommuting variables, define

$$h_{\pi} = \sum_{L} m_{\sigma}$$

where the sum is over all linear orderings L of the elements in each block of $\sigma \wedge \pi$.

Ex. For $\pi = 13/2$ we have

$$h_{13/2} = m_{1/2/3} + m_{12/3} + 2m_{13/2} + m_{1/23} + 2m_{123}.$$

Theorem 2 Applying the forgetful map gives

$$\rho(h_{\pi}) = \pi! h_{\lambda(\pi)}.$$

2. Basis Change

Let Π_n be the lattice of all $\pi \vdash [n]$ ordered by refinement, i.e., if $\pi = B_1/\ldots/B_k$ and $\sigma = C_1/\ldots/C_l$ then $\pi \leq \sigma$ if each B_i is contained in some C_i .

Let $\pi \wedge \sigma$ be the *greatest lower bound* or *meet* of π and σ . Also let $\hat{0} = 1/2/.../n$ and μ denote the minimum and Möbius function of Π_n , respectively.

Theorem 3 (Doubilet) We have

$$(1) p_{\pi} = \sum_{\sigma \geq \pi} m_{\sigma},$$

(2)
$$m_{\pi} = \sum_{\sigma \geq \pi} \mu(\pi, \sigma) p_{\sigma},$$

$$(3) e_{\pi} = \sum_{\sigma \wedge \pi = \hat{0}} m_{\sigma},$$

(4)
$$m_{\pi} = \sum_{\sigma \geq \pi} \frac{\mu(\pi, \sigma)}{\mu(\widehat{0}, \sigma)} \sum_{\tau \leq \sigma} \mu(\tau, \sigma) e_{\tau}.$$

Proof (1) & (3) follow directly from the definitions. (2) & (4) now follow by Möbius inversion. ■

3. MacMahon Symmetric Functions

Given variable sets $\dot{\mathbf{x}} = \{\dot{x}_1, \dot{x}_2, ...\}$, $\ddot{\mathbf{x}} = \{\ddot{x}_1, \ddot{x}_2, ...\}$, ..., $\mathbf{x^{(n)}} = \{x_1^{(n)}, x_2^{(n)}, ...\}$, we let $g \in S_m$ act on a $f(\dot{\mathbf{x}}, \ddot{\mathbf{x}}, ..., \mathbf{x^{(n)}}) \in \mathbb{Q}[[\dot{\mathbf{x}}, \ddot{\mathbf{x}}, ..., \mathbf{x^{(n)}}]]$ diagonally:

$$gf(\dot{x}_1, \ddot{x}_1, \dots, \dot{x}_2, \ddot{x}_2, \dots) = f(\dot{x}_{q1}, \ddot{x}_{q1}, \dots, \dot{x}_{q2}, \ddot{x}_{q2}, \dots).$$

The monomial

$$\dot{x}_{1}^{a_{1}}\ddot{x}_{1}^{b_{1}}\cdots x_{1}^{(n)c_{1}}\dot{x}_{2}^{a_{2}}\ddot{x}_{2}^{b_{2}}\cdots x_{2}^{(n)c_{2}}\cdots$$

has *multiexponent*

$$\vec{\lambda} = \{\lambda^1, \lambda^2, \ldots\}$$

:= \{[a_1, b_1, \ldots, c_1], [a_2, b_2, \ldots, c_2], \ldots\}

as well as multidegree

$$\vec{m} = [m_1, m_2, \dots, m_n]$$

 $:= [a_1, b_1, \dots, c_1] + [a_2, b_2, \dots, c_2] + \cdots$

and we write $\vec{\lambda} \vdash \vec{m}$.

Ex. For $\dot{x}_1^2\ddot{x}_1\dot{x}_2^3$ we have

$$\vec{\lambda} = \{[2,1], [3,0]\}$$
 and $\vec{m} = [2,1] + [3,0] = [5,1]$.

The algebra of MacMahon symmetric functions, \mathcal{M} , is the set of all elements in $\mathbb{Q}[[\dot{\mathbf{x}}, \ddot{\mathbf{x}}, \dots, \mathbf{x}^{(n)}]]$ which are symmetric and of bounded multidegree. Bases for \mathcal{M} are indexed by vector partitions $\vec{\lambda}$.

Define the *monomial MacMahon SF* by

 $m_{\vec{\lambda}} = {\sf sum}$ of all monomials with multiexponent $\vec{\lambda}$.

Define power sum & elementary MacMahon SFs by

$$\begin{array}{ll} p_{[a,b,\ldots,c]} &=& \dot{x}_1^a \ddot{x}_1^b \cdots x_1^{(n)c} + \dot{x}_2^a \ddot{x}_2^b \cdots x_2^{(n)c} \cdots \\ e_{[a,b,\ldots,c]} &=& \sum (\text{multidegree } [a,b,\ldots,c] \text{ dottings} \\ && \text{of squarefree monomials}), \\ h_{[a,b,\ldots,c]} &=& \sum (\text{multidegree } [a,b,\ldots,c] \text{ dottings} \\ && \text{of all monomials}), \end{array}$$

and multiplicativity. (In h, repetitions of a variable are considered distinct, leading to multiplicities.)

Ex. For $\vec{\lambda} = \{[2, 1], [3, 0]\}$ we have

$$m_{\{[2,1],[3,0]\}} = \dot{x}_{1}^{2}\ddot{x}_{1}\dot{x}_{2}^{3} + \dot{x}_{1}^{3}\dot{x}_{2}^{2}\ddot{x}_{2} + \cdots$$

$$p_{\{[2,1],[3,0]\}} = (\dot{x}_{1}^{2}\ddot{x}_{1} + \dot{x}_{2}^{2}\ddot{x}_{2} + \cdots)(\dot{x}_{1}^{3} + \dot{x}_{2}^{3} + \cdots)$$

$$e_{\{[2,1],[3,0]\}} = (\dot{x}_{1}\dot{x}_{2}\ddot{x}_{3} + \dot{x}_{1}\ddot{x}_{2}\dot{x}_{3} + \ddot{x}_{1}\dot{x}_{2}\dot{x}_{3} + \cdots)$$

$$(\dot{x}_{1}\dot{x}_{2}\dot{x}_{3} + \dot{x}_{1}\dot{x}_{2}\dot{x}_{4} + \cdots)$$

$$h_{\{[2,1],[3,0]\}} = (3\dot{x}_{1}^{2}\ddot{x}_{1} + \dot{x}_{1}^{2}\ddot{x}_{2} + 2\dot{x}_{1}\ddot{x}_{1}\dot{x}_{2} + \cdots)$$

$$(\dot{x}_{1}^{3} + \dot{x}_{1}^{2}\dot{x}_{2} + \dot{x}_{1}\dot{x}_{2}\dot{x}_{3} + \cdots)$$

Let $\langle \cdot \rangle$ denote vector space span and consider

$$\mathcal{M}_{\lceil 1^n \rceil} = \langle m_{\vec{\lambda}} : \text{all } \vec{\lambda} \vdash [1^n] \rangle.$$

Ex. For n = 3 we have

$$\begin{split} \mathcal{M}_{[1,1,1]} &= \langle m_{\{[1,1,1]\}}, m_{\{[1,1,0],[0,0,1]\}}, m_{\{[1,0,1],[0,1,0]\}}, \\ &m_{\{[0,1,1],[1,0,0]\}}, m_{\{[1,0,0],[0,1,0],[0,0,1]\}} \rangle. \end{split}$$

Theorem 4 (Rosas) The map

$$\Phi:\bigoplus_{n\geq 0}\mathcal{M}_{[1^n]}\to \Pi(\mathbf{x})$$

given by linearly extending

$$\dot{x}_i \ddot{x}_j \cdots x_k^{(n)} \stackrel{\Phi}{\mapsto} x_i x_j \cdots x_k$$

is an isomorphism of vector spaces. In fact

$$b_{\{\lambda^1,\lambda^2,\dots,\lambda^l\}} \stackrel{\Phi}{\mapsto} b_{B_1/B_2/\dots/B_l}$$

where b = m, p, e or h and λ^i is the characteristic vector of B_i .

Ex.
$$m_{\{[1,0,1],[0,1,0]\}} \stackrel{\Phi}{\mapsto} m_{13/2}$$
 since $\dot{x}_1 \ddot{x}_1 \ddot{x}_2 + \dot{x}_2 \ddot{x}_2 \ddot{x}_1 + \dot{x}_1 \ddot{x}_1 \ddot{x}_3 + \cdots$ $\stackrel{\Phi}{\mapsto} x_1 x_2 x_1 + x_2 x_1 x_2 + x_1 x_3 x_1 + \cdots$

4. Schur Symmetric Functions

A partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ has a *shape*, also denoted λ , consisting of l left-justified rows with λ_i dots in row i.

Ex. Partition $\lambda = (3, 3, 2, 1)$ has shape

$$\lambda = \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix}.$$

A (semistandard) Young tableau T of shape λ , written $\lambda(T) = \lambda$, is obtained by replacing each dot of the shape of λ with a positive integer so that rows weakly increase and columns strictly increase.

Ex. A Young tableau of shape (3,3,2,1) is

$$T = \begin{array}{cccc} 1 & 1 & 3 \\ 2 & 2 & 5 \\ 3 & 6 & \\ 5 & & \end{array}.$$

The *Schur function*, s_{λ} , is

$$s_{\lambda} = \sum_{\lambda(T)=\lambda} M_T$$
 where $M_T = \prod_{i \in T} x_i$.

Ex. If $\lambda = (2,1)$ then

$$s_{(2,1)} = x_1^2 x_2 + x_1 x_2^2 + \dots + x_1 x_2 x_3 + x_1 x_2 x_3 + \dots$$

If $\lambda, \vec{m} \vdash d$ then a dotted Young tableau T of shape λ and multidegree \vec{m} is obtained from T by putting one dot on m_1 elements of T, two dots on m_2 elements of T, etc. The corresponding MacMahon Schur function is

$$S_{\lambda}^{\vec{m}} = \sum_{\lambda(\dot{T})=\lambda} M_{\dot{T}}$$
 where $M_{\dot{T}} = \prod_{i^{(j)} \in T} x_i^{(j)}$.

Ex. If $\lambda = (2,1)$ and $\vec{m} = [1,1,1]$ then

$$\dot{T}$$
 : $\ddot{\frac{1}{2}}$ $\ddot{\ddot{1}}$, $\ddot{\frac{1}{2}}$ $\ddot{1}$, ..., $\ddot{\frac{1}{2}}$ $\ddot{\ddot{1}}$, ...

$$S_{(2,1)}^{[1,1,1]} = \dot{x}_1 \ddot{x}_1 \ddot{x}_2 + \dot{x}_1 \ddot{x}_1 \ddot{x}_2 + \dots + \ddot{x}_1 \ddot{x}_1 \dot{x}_2 + \dots$$

The MacMahon Schur functions have many of the same properties as do the regular Schur functions, such as a Robinson-Schensted-Knuth correspondence.

Theorem 5 (Jacobi-Trudi Determinant) Given a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$, we have

$$s_{\lambda} = |h_{\lambda_i - i + j}|.$$

The analogue of this theorem for MacMahon symmetric functions is as follows.

Theorem 6 (R-S) Given a partition λ and vector \vec{m} with $\lambda, \vec{m} \vdash n$, we have

$$S_{\lambda}^{\vec{m}} = \mathcal{T}^{\vec{m}} \left| \sum_{\vec{q} \; \vdash \lambda_i - i + j} h_{\vec{q}} \; \right|$$

where $\mathcal{T}^{\vec{m}}$ extracts the terms of multidegree \vec{m} from the determinant.

Note that when \vec{m} has only one component, then this reduces to the ordinary Jacobi-Trudi Theorem. And when $\vec{m} = [1^n]$ then this gives a noncommuting variable analogue.

Ex. Consider $\lambda = (2,1)$.

If $\vec{m} = [3]$, then

$$s_{(2,1)}^{[3]} = \mathcal{T}^{[3]} \begin{vmatrix} \sum_{\vec{q}} h_{\vec{q}} & \sum_{\vec{q}} h_{\vec{q}} \\ \sum_{\vec{q}} h_{\vec{q}} & \sum_{\vec{q}} h_{\vec{q}} \\ \sum_{\vec{q}} h_{\vec{q}} & \sum_{\vec{q}} h_{\vec{q}} \end{vmatrix}$$
$$= h_{[2]}h_{[1]} - h_{[3]}h_{[0]}$$
$$= h_{(2,1)} - h_{3}$$

as normal.

Now if $\vec{m} = [1, 1, 1]$, then

$$s_{(2,1)}^{[1,1,1]} = \mathcal{T}^{[1,1,1]} \begin{vmatrix} \sum_{\vec{q} \mapsto 2} h_{\vec{q}} & \sum_{\vec{q} \mapsto 3} h_{\vec{q}} \\ \sum_{\vec{q} \mapsto 0} h_{\vec{q}} & \sum_{\vec{q} \mapsto 1} h_{\vec{q}} \end{vmatrix}$$

$$= \mathcal{T}^{[1,1,1]} \left\{ (h_{[1,1,0]} + h_{[1,0,1]} + h_{[0,1,1]}) + (h_{[1,0,0]} + h_{[0,1,0]} + h_{[0,0,1]}) - h_{[1,1,1]} h_{[0,0,0]} \right\}$$

 $= h_{[1,1,0]}h_{[0,0,1]} + h_{[1,0,1]}h_{[0,1,0]}$

 $+h_{[0,1,1]}h_{[1,0,0]}-h_{[1,1,1]}.$

5. Open Problems

- A. What is the analogue of the quotient of alternants definition of a Schur function for the $S_{\lambda}^{[1^n]}$?
- B. We have only defined $S_{\lambda}^{[1^n]}$ for λ an *integer* partition. Is there some way to define noncommuting variable functions $S_{\pi}^{[1^n]}$ for all *set* partitions π ?
- C. What does all this have to do with representation theory?
- D. Can one make further progress on the (3+1)-free conjecture of Stanley and Stembridge using symmetric functions in noncommuting variables?