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1. Symmetric Functions (SFs) Defined

Let Q[[x]] and Q((x)) be the algebras of formal power
series in commuting and noncommuting variables
x = {x1,xp,...}, respectively. Any g € G, (sym-
metric group) acts on f in either algebra by

gf(x1,22,...) = f(zg1,242,...)
where gt =1 for ¢ > m. Then f is symmetric if it is
invariant under all g in all &,,. Let N(x) and I(x)

be the subalgebras of Q[[x]] and Q((x)), respectively,
of symmetric power series of bounded degree.

Bases for A[x] are indexed by integer partitions A\ =
(A, A2,...,\)) Fn. The monomial SFs are

my = Z(monomials of exponent \).
Define power sum and elementary SFs by

e G R
Z(square—free monomials of degree n)

DPn
€En

and multiplicativity.

Ex. For A = (3,3,1) we have

. 3.3 3 3 3 3
m(331) = TITZTI T TIT2XZ T L1253 T+ -

P(3,3.1) (3 + 23+ )%z + 22+ )
e331) = (z12o73+ 17028 + ) (21 + 22+ )
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Bases for l[x] are indexed by set partitions = =
B1/B>/.../B;F [n] where [n] ={1,...,n}. Define

my = Z Ti X+ Ty, Where
ij = 1 Iff 3,k are in the same block of .
Pr = Z Tj1 Ty * " Ty, where

ij = i If j,k are in the same block of .
er = Zwilaziz ---x;. where
ij 7 1 if j,k are in the same block of .
Ex. For m = 13/2 we have

mi3/0 = 17271 + rox1%2 + T123%T1 + -,
P13/2 = Z1T2%1 + 2172 + o334
e13/2 = 12122 + 12272 + 17372+ -+

For A= (A1,..., ) = (1¢€1,2°2, ..., n) let
A=A\ and )\!:C]_!CQ!"'Cn!
The type of set partition « is the integer partition

)‘(ﬂ-) — (|B1|7 |BQ|7 sy |Bl|)

Theorem 1 Let p: Q((x)) — Q[[z]] be the forgetful
map and X\(w) = A. Then

p(mz) = Nmy,
p(pr) = pi,
pler) = MAley.



In the commuting case, the complete homogeneous
SFs are defined by multiplicativity and

Ex. For A =(3,3,1) we have

h3,1) = (27 +2feo + 212023+ )% (21 + 22+ ).

For noncommuting variables, define
hr = ng
L

where the sum is over all linear orderings L of the
elements in each block of o A .

Ex. For m = 13/2 we have

h13/2 = My /2/3 + M1p/3 T 2m13/5 + M1 /23 + 2M123.

Theorem 2 Applying the forgetful map gives

p(hﬂ-) — 7T!h,)\(ﬂ.).



2. Basis Change

Let M, be the lattice of all # + [n] ordered by re-
finement, i.e., ifmr=B1/.../B and o =C1/.../C|
then m < o if each B; is contained in some Cj.

Ex. We have 123

Ny = 12/3 1/23

1/2/3

Let @ Ao be the greatest lower bound or meet of
m and o. Also let 0 =1/2/.../n and p denote the
minimum and MObius function of I1,,, respectively.

Theorem 3 (Doubilet) We have

(1) Pr — Z Mg,
o>T

(2) Mmnr — Z ,u(ﬂ-70-)p0'7
o>T

er = ) mg,

(4) mg = Z M(TJ) Z w(r,o)er.

Proof (1) & (3) follow directly from the definitions.
(2) & (4) now follow by Mobius inversion. |



3. MacMahon Symmetric Functions

Given variable sets x = {z1,z2,...}, X = {%1,Zo,...},
o x® = 2 B we let g € S act on a
f(x,%, ..., xM)Y) e Q[[x,%,...,x(MW]] diagonally:

gf(:blvév.la ey TR, XD, ) — f(jjglaiv.gla s 7j3g275ég27 . )
The monomial
j;‘{'lg,flil . -x&”)clj:g%g? N -:cg”)CQ o
has multiexponent
Xo= {AL,x2..}
— {[a’].)bl)"')c].])[a’27b2)"'762])"'}

as well as multidegree

[m17m2,-..,mn]
[a'17b17"'7cl]+[af2,b2,...702]—|—--.

and we write X - m.

m

Ex. For #3#143 we have

X={[2,1],[3,0]} and m=[2,1]+[3,0] = [5,1].

The algebra of MacMahon symmetric functions, M,
is the set of all elements in Q[[x,%,...,x™]] which
are symmetric and of bounded multidegree. Bases
for M are indexed by vector partitions .



Define the monomial MacMahon SF by

my = sum of all monomials with multiexponent .

Define power sum & elementary MacMahon SFs by

— 3050 n)c b (n)c
p[a,b,...,c] - xc]l:xl ’ ( ) ‘l‘ 33'2332 Ty “ e

€lap,...q] = Y (multidegree [a,b,...,c] dottings
of squarefree monomials),

Map...q = 2 (multidegree [a,b,...,c] dottings
of all monomials),

and multiplicativity. (In h, repetitions of a variable
are considered distinct, leading to multiplicities.)

Ex. For X = {[2,1],[3,0]} we have

2. -3 .3.D..
m{[271]7[370]} — I1T1TH + TITHTD + ce

Pialpoy = @i+ a3io+-- )@+ a3+

ef2,1],3,0;y = (Z122%3 + 212223 + T12223 + )
(z12223 + T122T4 + - - )

hi[2,11,[3,0]} = (3&5%1 + 25ip + 2@ 5180 + - - -)
(@3 + #7do + 218243 4 - --)



Let (-) denote vector space span and consider

Mpm = (my : all X+ [17]).

Ex. For n = 3 we have

Mi1,1,11 = (My[1,1,1]3 ™{[1,1,0],[0,0,1]} ™{[1,0,1],[0,1,0]}»
M {[0,1,1],[1,0,0]}> "™{[1,0,0],[0,1,0],[0,0,1]})-

Theorem 4 (Rosas) The map

> @ M[ln] — ﬂ(x)
n>0

given by linearly extending
a:z:cj . -a:,(cn) 13 LT T,
iIs an isomorphism of vector spaces. In fact
b R b
{ALA2,. A} 77 OBy /Bs/.../By

where b = m, p, e or h and \' is the characteristic
vector of B;.

b .
EX. m{[1,0,11,[0,1,0]} 7 ™13/2 Since
T1 Ty o+ Top TpZ1+21 T1Z3+ -

P
— 1Tox1 + Tox1To + r1x3,1 + .-



4. Schur Symmetric Functions

A partition A = (A1,Ap,...,;) has a shape, also
denoted A, consisting of [ left-justified rows with \;
dots in row 1.

Ex. Partition A = (3,3,2,1) has shape

>

|
e 6 o o
e o o

A (semistandard) Young tableau T of shape X, writ-
ten X(T) = A, is obtained by replacing each dot of
the shape of A with a positive integer so that rows
weakly increase and columns strictly increase.

Ex. A Young tableau of shape (3,3,2,1) is
1 3
2 5
T = 6 :

OO W N =
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The Schur function, sy, is

sx= ». Mp where Mp=]] .
AMT)=A\ €T

Ex. If A= (2,1) then

T 1 1 1 2 1 2 1 3
2 ) 2 g e e 3 ’ 2 g e
5(21) — :IJ%CCQ + 37137% +- -+x1x03+ 2103+ - -

If A\, d then a dotted Young tableau T of shape
A and multidegree m is obtained from T by putting
one dot on m1y elements of T, two dots on mo el-

ements of 71T, etc. The corresponding MacMahon
Schur function is

St= Y Mz where M:= ]| :cgj).
AMT)=\ i@Der

Ex. If \=(2,1) and m» = [1,1,1] then

- 1 1 11 i 1
2 g PP .

(1,1,1] o e e e o
S(21)" = T1%1 To+a1¥y Tot--- 21 Ty 2o+
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The MacMahon Schur functions have many of the
same properties as do the regular Schur functions,
such as a Robinson-Schensted-Knuth correspondence.

Theorem 5 (Jacobi-Trudi Determinant) Given a
partition X = (A1, Ao,...,;), we have

Sx = |hx;—i+jl-

The analogue of this theorem for MacMahon sym-
metric functions is as follows.

Theorem 6 (R-S) Given a partition A and vector
m wWith A\, m - n, we have

=TT X By
7 A i

where T extracts the terms of multidegree m from
the determinant.

Note that when m has only one component, then
this reduces to the ordinary Jacobi-Trudi Theorem.
And when m = [1™] then this gives a noncommuting
variable analogue.

12



Ex. Consider A\

If m = [3], then

= (2,1).

hg
B8] _ +[3]|9F2
Sy = 7T .
q
qg FO
= hpoh1] — P31
= h1) —h3
as normal.
Now if m = [1,1,1], then
> hg >
(1,1,1] _ [111]|dF2  7+3
S —_ T 99
(2,1)
> hg
qg FO qgF1

Ty 1,00 4 hizo,a) + Ppoa,1)
-(h1,0,00 T P[o.1,0] T P0,0,17)

—h(1,1,11h(0,0,01}

h11,1,01710,0,1] T P[1,0,117[0,1,0]
thio,1,1)7[1,0,00 — P1,1,1)-
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5. Open Problems

A. What is the analogue of the quotient of alter-
nants definition of a Schur function for the Sg\l ]?

B. We have only defined S&ln] for X\ an integer par-
tition. Is there some way to define noncommuting
variable functions 57[r1 ] for all set partitions =7

C. What does all this have to do with representation
theory?

D. Can one make further progress on the (3+1)-
free conjecture of Stanley and Stembridge using
symmetric functions in noncommuting variables?
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