Layered permutations and rational generating functions

Anders Björner Department of Mathematics Kungliga Tekniska Högskolan S-100 44 Stockholm, SWEDEN

and

Bruce Sagan
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027
www.math.msu.edu/~sagan

August 28, 2006

Outline

A *composition* of a non-negative integer *N* is a sequence

$$w = k_1 k_2 \dots k_r$$
 with all $k_i \in \mathbb{P}$ and $\sum_i k_i = N$.

A *composition* of a non-negative integer *N* is a sequence

$$w = k_1 k_2 \dots k_r$$
 with all $k_i \in \mathbb{P}$ and $\sum_i k_i = N$.

Let c_N be the number of compositions of N.

A *composition* of a non-negative integer *N* is a sequence

$$w = k_1 k_2 \dots k_r$$
 with all $k_i \in \mathbb{P}$ and $\sum_i k_i = N$.

Let c_N be the number of compositions of N.

Ex. If N = 3 then $c_3 = 4$ counting compositions

A *composition* of a non-negative integer *N* is a sequence

$$w = k_1 k_2 \dots k_r$$
 with all $k_i \in \mathbb{P}$ and $\sum_i k_i = N$.

Let c_N be the number of compositions of N.

Ex. If N = 3 then $c_3 = 4$ counting compositions

Theorem

$$c_N = \left\{ \begin{array}{ll} 2^{N-1} & \text{if } N \geq 1 \\ 1 & \text{if } N = 0 \end{array} \right..$$

A *composition* of a non-negative integer *N* is a sequence

$$w = k_1 k_2 \dots k_r$$
 with all $k_i \in \mathbb{P}$ and $\sum_i k_i = N$.

Let c_N be the number of compositions of N.

Ex. If N = 3 then $c_3 = 4$ counting compositions

Theorem

$$c_N = \left\{ \begin{array}{ll} 2^{N-1} & \text{if } N \geq 1 \\ 1 & \text{if } N = 0 \end{array} \right..$$

So we have the rational generating function

$$\sum_{N>0} c_N x^N = \frac{1-x}{1-2x}.$$

A *composition* of a non-negative integer *N* is a sequence

$$w = k_1 k_2 \dots k_r$$
 with all $k_i \in \mathbb{P}$ and $\sum_i k_i = N$.

Let c_N be the number of compositions of N.

Ex. If N = 3 then $c_3 = 4$ counting compositions

Theorem

$$c_N = \left\{ \begin{array}{ll} 2^{N-1} & \text{if } N \geq 1 \\ 1 & \text{if } N = 0 \end{array} \right..$$

So we have the rational generating function

$$\sum_{N>0} c_N x^N = \frac{1-x}{1-2x}.$$

Questions:

1. Is this an isolated incident or part of a larger picture?

A *composition* of a non-negative integer N is a sequence

$$w = k_1 k_2 \dots k_r$$
 with all $k_i \in \mathbb{P}$ and $\sum_i k_i = N$.

Let c_N be the number of compositions of N.

Ex. If N = 3 then $c_3 = 4$ counting compositions

Theorem

$$c_N = \left\{ \begin{array}{ll} 2^{N-1} & \text{if } N \geq 1 \\ 1 & \text{if } N = 0 \end{array} \right..$$

So we have the rational generating function

$$\sum_{N>0} c_N x^N = \frac{1-x}{1-2x}.$$

Questions:

- 1. Is this an isolated incident or part of a larger picture?
- 2. What does this have to do with patterns in permutations?

A *composition* of a non-negative integer *N* is a sequence

$$w = k_1 k_2 \dots k_r$$
 with all $k_i \in \mathbb{P}$ and $\sum_i k_i = N$.

Let c_N be the number of compositions of N.

Ex. If N=3 then $c_3=4$ counting compositions

Theorem

$$c_N = \left\{ \begin{array}{ll} 2^{N-1} & \text{if } N \geq 1 \\ 1 & \text{if } N = 0 \end{array} \right..$$

So we have the rational generating function

$$\sum_{N>0} c_N x^N = \frac{1-x}{1-2x}.$$

Questions:

- 1. Is this an isolated incident or part of a larger picture?
- 2. What does this have to do with patterns in permutations?

Moral:

It can be better to count by containment instead of avoidance.

Let $[n] = \{1, 2, ..., n\}$ and let \mathfrak{S}_n be the symmetric group on [n].

$$\pi = p, p-1, \ldots, 1, p+q, p+q-1, \ldots, p+1, p+q+r, \ldots$$

for certain p, q, r, \ldots called the *layer lengths*.

$$\pi = p, p-1, \ldots, 1, p+q, p+q-1, \ldots, p+1, p+q+r, \ldots$$

for certain p, q, r, \ldots called the *layer lengths*. There is a bijection between layered permutations and compositions by

$$\pi \longleftrightarrow w = pqr \dots$$

$$\pi = p, p-1, \ldots, 1, p+q, p+q-1, \ldots, p+1, p+q+r, \ldots$$

for certain p, q, r, \ldots called the *layer lengths*. There is a bijection between layered permutations and compositions by

$$\pi \longleftrightarrow w = pqr \dots$$

Ex.
$$\pi = 321549876 \longleftrightarrow w = 324$$
.

$$\pi = p, p-1, \ldots, 1, p+q, p+q-1, \ldots, p+1, p+q+r, \ldots$$

for certain p, q, r, \ldots called the *layer lengths*. There is a bijection between layered permutations and compositions by

$$\pi \longleftrightarrow w = pqr \dots$$

Ex. $\pi = 321549876 \longleftrightarrow w = 324$. Any set *A* (the alphabet) has Kleene closure

$$A^* = \{ w = k_1 k_2 \dots k_r \mid k_i \in A \text{ for all } i \text{ and } r \ge 0 \}.$$

$$\pi = p, p-1, \ldots, 1, p+q, p+q-1, \ldots, p+1, p+q+r, \ldots$$

for certain p, q, r, \ldots called the *layer lengths*. There is a bijection between layered permutations and compositions by

$$\pi \longleftrightarrow w = pqr \dots$$

Ex. $\pi = 321549876 \longleftrightarrow w = 324$. Any set *A* (the alphabet) has Kleene closure

$$A^* = \{ w = k_1 k_2 \dots k_r \mid k_i \in A \text{ for all } i \text{ and } r \ge 0 \}.$$

Note

w is a composition iff $w \in \mathbb{P}^*$.

Letting $\pi \leq \sigma$ whenever π is a pattern in σ turns $\mathfrak{S} = \uplus_{n \geq 0} \mathfrak{S}_n$ into a partially ordered set (poset).

Letting $\pi \leq \sigma$ whenever π is a pattern in σ turns $\mathfrak{S} = \displaystyle \uplus_{n \geq 0} \mathfrak{S}_n$ into a partially ordered set (poset). This induces a partial order on \mathbb{P}^* (Bergeron, Bousquet-Mélou, and Dulucq, 1995):

$$k_j \leq l_{i_j}$$
 for $1 \leq j \leq r$.

$$k_j \leq l_{i_j}$$
 for $1 \leq j \leq r$.

The index set $I = \{i_1, \dots, i_r\}$ is called an *embedding* of u into w.

$$k_j \leq l_{i_j}$$
 for $1 \leq j \leq r$.

The index set $I = \{i_1, \dots, i_r\}$ is called an *embedding* of u into w. **Ex.** If $u = 4 \ 1 \ 3$ and $w = 4 \ 1 \ 4 \ 3 \ 2 \ 4 \ 2$ then $u \le w$,

$$k_j \leq l_{i_j}$$
 for $1 \leq j \leq r$.

The index set $I = \{i_1, \dots, i_r\}$ is called an *embedding* of u into w. **Ex.** If $u = 4 \ 1 \ 3$ and $w = 4 \ 1 \ 4 \ 3 \ 2 \ 4 \ 2$ then $u \le w$, for example,

$$k_j \leq l_{i_j}$$
 for $1 \leq j \leq r$.

The index set $I = \{i_1, \dots, i_r\}$ is called an *embedding* of u into w. **Ex.** If $u = 4 \ 1 \ 3$ and $w = 4 \ 1 \ 4 \ 3 \ 2 \ 4 \ 2$ then $u \le w$, for example,

$$k_j \leq l_{i_j}$$
 for $1 \leq j \leq r$.

The index set $I = \{i_1, \dots, i_r\}$ is called an *embedding* of u into w. **Ex.** If $u = 4 \ 1 \ 3$ and $w = 4 \ 1 \ 4 \ 3 \ 2 \ 4 \ 2$ then $u \le w$, for example,

$$k_j \leq l_{i_j}$$
 for $1 \leq j \leq r$.

The index set $I = \{i_1, \dots, i_r\}$ is called an *embedding* of u into w. **Ex.** If $u = 4 \ 1 \ 3$ and $w = 4 \ 1 \ 4 \ 3 \ 2 \ 4 \ 2$ then $u \le w$, for example,

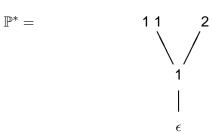
Given $u \le w$ there is a unique *rightmost embedding, I*, such that $l \ge l'$ componentwise for all embeddings l'. The embedding above is rightmost.

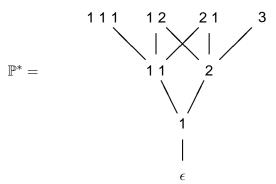
 $\mathbb{P}^* =$

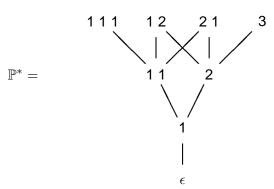
 ϵ

 $\mathbb{P}^* =$

 $\frac{1}{\epsilon}$







Outline

For any alphabet A, the formal power series in noncommuting variables A with integral coefficients is

$$\mathbb{Z}\langle\langle A \rangle\rangle = \{f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \quad \forall w\}.$$

For any alphabet *A*, the *formal power series in noncommuting variables A with integral coefficients* is

$$\mathbb{Z}\langle\langle A \rangle\rangle = \{f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \quad \forall w\}.$$

Let
$$[n] = \{1, \dots, n\}$$
 have alphabet $[\overline{n}] = \{\overline{1}, \dots, \overline{n}\}$.

For any alphabet A, the formal power series in noncommuting variables A with integral coefficients is

$$\mathbb{Z}\langle\langle A\rangle\rangle = \{f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \quad \forall w\}.$$

Let $[n] = \{1, ..., n\}$ have alphabet $[\bar{n}] = \{\bar{1}, ..., \bar{n}\}$. Given $u \in [\bar{n}]^*$, consider

$$Z(u) = \sum_{w>u} w \in \mathbb{Z}\langle\langle [\bar{n}] \rangle\rangle.$$

$$\mathbb{Z}\langle\langle A\rangle\rangle = \{f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \quad \forall w\}.$$

Let $[n] = \{1, ..., n\}$ have alphabet $[\bar{n}] = \{\bar{1}, ..., \bar{n}\}$. Given $u \in [\bar{n}]^*$, consider

$$Z(u) = \sum_{w>u} w \in \mathbb{Z}\langle\langle[\bar{n}]\rangle\rangle.$$

Ex.
$$Z(\bar{1} \ \bar{1}) = \bar{1} \ \bar{1} + \bar{1} \ \bar{1} \ \bar{1} + \bar{1} \ \bar{2} + \bar{2} \ \bar{1} + \cdots$$

$$\mathbb{Z}\langle\langle A\rangle\rangle = \{f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \quad \forall w\}.$$

Let $[n] = \{1, ..., n\}$ have alphabet $[\bar{n}] = \{\bar{1}, ..., \bar{n}\}$. Given $u \in [\bar{n}]^*$, consider

$$Z(u) = \sum_{w>u} w \in \mathbb{Z}\langle\langle[\bar{n}]\rangle\rangle.$$

Ex.
$$Z(\bar{1} \ \bar{1}) = \bar{1} \ \bar{1} + \bar{1} \ \bar{1} \ \bar{1} + \bar{1} \ \bar{2} + \bar{2} \ \bar{1} + \cdots$$

Theorem (Björner & S)

For all $u \in [\bar{n}]^*$, the series Z(u) is rational.

$$\mathbb{Z}\langle\langle A\rangle\rangle = \{f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \quad \forall w\}.$$

Let $[n] = \{1, ..., n\}$ have alphabet $[\bar{n}] = \{\bar{1}, ..., \bar{n}\}$. Given $u \in [\bar{n}]^*$, consider

$$Z(u) = \sum_{w>u} w \in \mathbb{Z}\langle\langle[\bar{n}]\rangle\rangle.$$

Ex.
$$Z(\bar{1} \ \bar{1}) = \bar{1} \ \bar{1} + \bar{1} \ \bar{1} \ \bar{1} + \bar{1} \ \bar{2} + \bar{2} \ \bar{1} + \cdots$$

Theorem (Björner & S)

For all $u \in [\bar{n}]^*$, the series Z(u) is rational.

Given
$$f = \sum_{w} c(w)w \in \mathbb{Z}\langle\langle A \rangle\rangle$$
 with $c(\epsilon) = 0$, let

$$f^* = \epsilon + f + f^2 + f^3 + \cdots$$

$$\mathbb{Z}\langle\langle A\rangle\rangle = \{f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \quad \forall w\}.$$

Let $[n] = \{1, ..., n\}$ have alphabet $[\bar{n}] = \{\bar{1}, ..., \bar{n}\}$. Given $u \in [\bar{n}]^*$, consider

$$Z(u) = \sum_{w>u} w \in \mathbb{Z}\langle\langle[\bar{n}]\rangle\rangle.$$

Ex.
$$Z(\bar{1} \ \bar{1}) = \bar{1} \ \bar{1} + \bar{1} \ \bar{1} \ \bar{1} + \bar{1} \ \bar{2} + \bar{2} \ \bar{1} + \cdots$$

Theorem (Björner & S)

For all $u \in [\bar{n}]^*$, the series Z(u) is rational.

Given $f = \sum_{w} c(w)w \in \mathbb{Z}\langle\langle A \rangle\rangle$ with $c(\epsilon) = 0$, let

$$f^* = \epsilon + f + f^2 + f^3 + \cdots$$
$$= (\epsilon - f)^{-1}.$$

$$\mathbb{Z}\langle\langle A\rangle\rangle = \{f = \sum_{w \in A^*} c(w)w \mid c(w) \in \mathbb{Z} \quad \forall w\}.$$

Let $[n] = \{1, ..., n\}$ have alphabet $[\bar{n}] = \{\bar{1}, ..., \bar{n}\}$. Given $u \in [\bar{n}]^*$, consider

$$Z(u) = \sum_{w>u} w \in \mathbb{Z}\langle\langle[\bar{n}]\rangle\rangle.$$

Ex.
$$Z(\bar{1} \ \bar{1}) = \bar{1} \ \bar{1} + \bar{1} \ \bar{1} \ \bar{1} + \bar{1} \ \bar{2} + \bar{2} \ \bar{1} + \cdots$$

Theorem (Björner & S)

For all $u \in [\bar{n}]^*$, the series Z(u) is rational.

Given $f = \sum_{w} c(w)w \in \mathbb{Z}\langle\langle A \rangle\rangle$ with $c(\epsilon) = 0$, let

$$f^* = \epsilon + f + f^2 + f^3 + \cdots$$
$$= (\epsilon - f)^{-1}.$$

Convention: If $S \subseteq A$, then we also let S stand for $\sum_{s \in S} s$.

For all $u \in [\bar{n}]^*$, the series Z(u) is rational.

For all $u \in [\bar{n}]^*$, the series Z(u) is rational.

Proof We generate each $w \ge u$ by rightmost embedding as follows.

For all $u \in [\bar{n}]^*$, the series Z(u) is rational.

Proof We generate each $w \ge u$ by rightmost embedding as follows. If $\bar{k} \in [\bar{n}]$ then let $z(\bar{k})$ be the sum of all w which begin with an element $\ge \bar{k}$ followed only by elements $< \bar{k}$.

For all $u \in [\bar{n}]^*$, the series Z(u) is rational.

Proof We generate each $w \geq u$ by rightmost embedding as follows. If $\bar{k} \in [\bar{n}]$ then let $z(\bar{k})$ be the sum of all w which begin with an element $\geq \bar{k}$ followed only by elements $< \bar{k}$. So

$$z(\bar{k}) = [\bar{k}, \bar{n}][\overline{k-1}]^*$$

where $[k, n] = \{k, k + 1, ..., n\}.$

For all $u \in [\bar{n}]^*$, the series Z(u) is rational.

Proof We generate each $w \ge u$ by rightmost embedding as follows. If $\bar{k} \in [\bar{n}]$ then let $z(\bar{k})$ be the sum of all w which begin with an element $\ge \bar{k}$ followed only by elements $< \bar{k}$. So

$$z(\bar{k}) = [\bar{k}, \bar{n}][\overline{k-1}]^*$$

where $[k, n] = \{k, k + 1, ..., n\}.$

Ex. If n = 4 and k = 3 then

$$z(\bar{3}) = (\bar{3} + \bar{4})(\bar{1} + \bar{2})^*$$

For all $u \in [\bar{n}]^*$, the series Z(u) is rational.

Proof We generate each $w \geq u$ by rightmost embedding as follows. If $\bar{k} \in [\bar{n}]$ then let $z(\bar{k})$ be the sum of all w which begin with an element $\geq \bar{k}$ followed only by elements $< \bar{k}$. So

$$z(\bar{k}) = [\bar{k}, \bar{n}][\overline{k-1}]^*$$

where $[k, n] = \{k, k + 1, ..., n\}.$

Ex. If n = 4 and k = 3 then

$$z(\bar{3}) = (\bar{3} + \bar{4})(\bar{1} + \bar{2})^*$$

= $\bar{3} + \bar{4} + \bar{3} \bar{1} + \bar{3} \bar{2} + \bar{4} \bar{1} + \bar{4} \bar{2} + \cdots$

For all $u \in [\bar{n}]^*$, the series Z(u) is rational.

Proof We generate each $w \geq u$ by rightmost embedding as follows. If $\bar{k} \in [\bar{n}]$ then let $\mathbf{z}(\bar{k})$ be the sum of all w which begin with an element $\geq \bar{k}$ followed only by elements $< \bar{k}$. So

$$z(\bar{k}) = [\bar{k}, \bar{n}][\overline{k-1}]^*$$

where $[k, n] = \{k, k + 1, ..., n\}.$

Now if $u = \bar{k}_1 \dots \bar{k}_r$ then

$$Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r).$$

Ex. If n = 4 and k = 3 then

$$z(\bar{3}) = (\bar{3} + \bar{4})(\bar{1} + \bar{2})^*$$

= $\bar{3} + \bar{4} + \bar{3}\bar{1} + \bar{3}\bar{2} + \bar{4}\bar{1} + \bar{4}\bar{2} + \cdots$

Outline

$$Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r)$$
 with $z(\bar{k}) = [\bar{k}, \bar{n}][\overline{k-1}]^*$.

$$Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r)$$
 with $z(\bar{k}) = [\bar{k}, \bar{n}][\overline{k-1}]^*$.
The *norm* of $u = \bar{k}_1 \dots \bar{k}_r \in \mathbb{P}^*$ is $|u| = \sum_i k_i$.

$$Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r) \quad \text{with} \quad z(\bar{k}) = [\bar{k}, \bar{n}][\overline{k-1}]^*.$$

The *norm* of $u = \bar{k}_1 \dots \bar{k}_r \in \mathbb{P}^*$ is $|u| = \sum_i k_i$.

$$Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r)$$
 with $z(\bar{k}) = [\bar{k}, \bar{n}][\overline{k-1}]^*$.

The *norm* of $u = \bar{k}_1 \dots \bar{k}_r \in \mathbb{P}^*$ is $|u| = \sum_i k_i$.

$$u = \bar{k}_1 \dots \bar{k}_r \quad \rightsquigarrow \quad x^{k_1} \dots x^{k_r} = x^{|u|},$$

$$Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r)$$
 with $z(\bar{k}) = [\bar{k}, \bar{n}][\overline{k-1}]^*$.

The *norm* of $u = \bar{k}_1 \dots \bar{k}_r \in \mathbb{P}^*$ is $|u| = \sum_i k_i$.

$$u = \bar{k}_1 \dots \bar{k}_r \quad \rightsquigarrow \quad x^{k_1} \dots x^{k_r} = x^{|u|},$$

$$z(\bar{k}) \quad \rightsquigarrow \quad (x^k + x^{k+1} + \dots + x^n)(x + x^2 + \dots + x^{k-1})^*$$

$$Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r)$$
 with $z(\bar{k}) = [\bar{k}, \bar{n}][\overline{k-1}]^*$.

The *norm* of $u = \bar{k}_1 \dots \bar{k}_r \in \mathbb{P}^*$ is $|u| = \sum_i k_i$.

$$u = \bar{k}_{1} \dots \bar{k}_{r} \quad \rightsquigarrow \quad x^{k_{1}} \dots x^{k_{r}} = x^{|u|},$$

$$z(\bar{k}) \quad \rightsquigarrow \quad (x^{k} + x^{k+1} + \dots + x^{n})(x + x^{2} + \dots + x^{k-1})^{*}$$

$$= \quad \frac{x^{k} + x^{k+1} + \dots + x^{n}}{1 - (x + x^{2} + \dots + x^{k-1})}$$

$$Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r)$$
 with $z(\bar{k}) = [\bar{k}, \bar{n}][\overline{k-1}]^*$.

The *norm* of $u = \bar{k}_1 \dots \bar{k}_r \in \mathbb{P}^*$ is $|u| = \sum_i k_i$.

$$u = \bar{k}_{1} \dots \bar{k}_{r} \quad \rightsquigarrow \quad x^{k_{1}} \dots x^{k_{r}} = x^{|u|},$$

$$z(\bar{k}) \quad \rightsquigarrow \quad (x^{k} + x^{k+1} + \dots + x^{n})(x + x^{2} + \dots + x^{k-1})^{*}$$

$$= \quad \frac{x^{k} + x^{k+1} + \dots + x^{n}}{1 - (x + x^{2} + \dots + x^{k-1})} = \frac{x^{k} - x^{n+1}}{1 - 2x + x^{k}},$$

$$Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r)$$
 with $z(\bar{k}) = [\bar{k}, \bar{n}][\overline{k-1}]^*$.

The *norm* of $u = \bar{k}_1 \dots \bar{k}_r \in \mathbb{P}^*$ is $|u| = \sum_i k_i$.

$$u = \bar{k}_{1} \dots \bar{k}_{r} \quad \rightsquigarrow \quad x^{k_{1}} \dots x^{k_{r}} = x^{|u|},$$

$$z(\bar{k}) \quad \rightsquigarrow \quad (x^{k} + x^{k+1} + \dots + x^{n})(x + x^{2} + \dots + x^{k-1})^{*}$$

$$= \quad \frac{x^{k} + x^{k+1} + \dots + x^{n}}{1 - (x + x^{2} + \dots + x^{k-1})} \quad = \quad \frac{x^{k} - x^{n+1}}{1 - 2x + x^{k}},$$

$$[\bar{n}]^{*} \quad \rightsquigarrow \quad (x + x^{2} + \dots + x^{n})^{*}$$

$$Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r)$$
 with $z(\bar{k}) = [\bar{k}, \bar{n}][\overline{k-1}]^*$.

The *norm* of $u = \bar{k}_1 \dots \bar{k}_r \in \mathbb{P}^*$ is $|u| = \sum_i k_i$.

$$u = \bar{k}_{1} \dots \bar{k}_{r} \quad \rightsquigarrow \quad x^{k_{1}} \dots x^{k_{r}} = x^{|u|},$$

$$z(\bar{k}) \quad \rightsquigarrow \quad (x^{k} + x^{k+1} + \dots + x^{n})(x + x^{2} + \dots + x^{k-1})^{*}$$

$$= \quad \frac{x^{k} + x^{k+1} + \dots + x^{n}}{1 - (x + x^{2} + \dots + x^{k-1})} \quad = \quad \frac{x^{k} - x^{n+1}}{1 - 2x + x^{k}},$$

$$[\bar{n}]^{*} \quad \rightsquigarrow \quad (x + x^{2} + \dots + x^{n})^{*} \quad = \quad \frac{1 - x}{1 - 2x + x^{n+1}}.$$

$$Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r)$$
 with $z(\bar{k}) = [\bar{k}, \bar{n}][\overline{k-1}]^*$.

The *norm* of $u = \bar{k}_1 \dots \bar{k}_r \in \mathbb{P}^*$ is $|u| = \sum_i k_i$.

Let x be a variable and substitute $\bar{k} \rightsquigarrow x^k$.

$$u = \bar{k}_{1} \dots \bar{k}_{r} \quad \rightsquigarrow \quad x^{k_{1}} \dots x^{k_{r}} = x^{|u|},$$

$$z(\bar{k}) \quad \rightsquigarrow \quad (x^{k} + x^{k+1} + \dots + x^{n})(x + x^{2} + \dots + x^{k-1})^{*}$$

$$= \quad \frac{x^{k} + x^{k+1} + \dots + x^{n}}{1 - (x + x^{2} + \dots + x^{k-1})} = \frac{x^{k} - x^{n+1}}{1 - 2x + x^{k}},$$

$$[\bar{n}]^{*} \quad \rightsquigarrow \quad (x + x^{2} + \dots + x^{n})^{*} = \frac{1 - x}{1 - 2x + x^{n+1}}.$$

The *type* of $u \in [\bar{n}]^*$ is $t(u) = (t_1, \dots, t_n)$ where $t_k = \#$ of $\bar{k} \in u$.

$$Z(u) = [\bar{n}]^* z(\bar{k}_1) \cdots z(\bar{k}_r)$$
 with $z(\bar{k}) = [\bar{k}, \bar{n}][\overline{k-1}]^*$.

The *norm* of $u = \bar{k}_1 \dots \bar{k}_r \in \mathbb{P}^*$ is $|u| = \sum_i k_i$.

Let x be a variable and substitute $\bar{k} \rightsquigarrow x^k$.

$$\begin{array}{lll} u = \bar{k}_{1} \ldots \bar{k}_{r} & \rightsquigarrow & x^{k_{1}} \cdots x^{k_{r}} = x^{|u|}, \\ z(\bar{k}) & \rightsquigarrow & (x^{k} + x^{k+1} + \cdots + x^{n})(x + x^{2} + \cdots + x^{k-1})^{*} \\ & = & \frac{x^{k} + x^{k+1} + \cdots + x^{n}}{1 - (x + x^{2} + \cdots + x^{k-1})} & = & \frac{x^{k} - x^{n+1}}{1 - 2x + x^{k}}, \\ [\bar{n}]^{*} & \rightsquigarrow & (x + x^{2} + \ldots + x^{n})^{*} & = & \frac{1 - x}{1 - 2x + x^{n+1}}. \end{array}$$

The *type* of $u \in [\bar{n}]^*$ is $t(u) = (t_1, \dots, t_n)$ where $t_k = \#$ of $\bar{k} \in u$. Corollary (B & S)

If $u \in [\bar{n}]^*$ has $t(u) = (t_1, \dots, t_n)$ then

$$\sum_{w \ge u} x^{|w|} = \frac{1 - x}{1 - 2x + x^{n+1}} \prod_{k=1}^{n} \left(\frac{x^k - x^{n+1}}{1 - 2x + x^k} \right)^{t_k}.$$

If $u \in [\bar{n}]^*$ has $t(u) = (k_1, \dots, k_n)$ then

$$\sum_{w \ge u} x^{|w|} = \frac{1-x}{1-2x+x^{n+1}} \prod_{k=1}^n \left(\frac{x^k - x^{n+1}}{1-2x+x^k} \right)^{t_k}.$$

If
$$u \in [\bar{n}]^*$$
 has $t(u) = (k_1, \dots, k_n)$ then

$$\sum_{w \ge u} x^{|w|} = \frac{1 - x}{1 - 2x + x^{n+1}} \prod_{k=1}^{n} \left(\frac{x^k - x^{n+1}}{1 - 2x + x^k} \right)^{t_k}.$$

Note: 1. Letting $n \to \infty$ in this corollary we get $u \in \mathbb{P}^*$ and the x^{n+1} terms in the product drop out.

If $u \in [\bar{n}]^*$ has $t(u) = (k_1, \dots, k_n)$ then

$$\sum_{w \ge u} x^{|w|} = \frac{1 - x}{1 - 2x + x^{n+1}} \prod_{k=1}^{n} \left(\frac{x^k - x^{n+1}}{1 - 2x + x^k} \right)^{t_k}.$$

Note: 1. Letting $n \to \infty$ in this corollary we get $u \in \mathbb{P}^*$ and the x^{n+1} terms in the product drop out. So

$$\sum_{N>0} c_N x^N$$

If $u \in [\bar{n}]^*$ has $t(u) = (k_1, \dots, k_n)$ then

$$\sum_{w \ge u} x^{|w|} = \frac{1 - x}{1 - 2x + x^{n+1}} \prod_{k=1}^{n} \left(\frac{x^k - x^{n+1}}{1 - 2x + x^k} \right)^{t_k}.$$

Note: 1. Letting $n \to \infty$ in this corollary we get $u \in \mathbb{P}^*$ and the x^{n+1} terms in the product drop out. So

$$\sum_{N>0} c_N x^N = \sum_{w \geq \epsilon} x^{|w|}$$

If $u \in [\bar{n}]^*$ has $t(u) = (k_1, \dots, k_n)$ then

$$\sum_{w \ge u} x^{|w|} = \frac{1 - x}{1 - 2x + x^{n+1}} \prod_{k=1}^{n} \left(\frac{x^k - x^{n+1}}{1 - 2x + x^k} \right)^{t_k}.$$

Note: 1. Letting $n \to \infty$ in this corollary we get $u \in \mathbb{P}^*$ and the x^{n+1} terms in the product drop out. So

$$\sum_{N>0} c_N x^N = \sum_{w>\epsilon} x^{|w|} = \frac{1-x}{1-2x} \cdot 1 \quad \text{since } t(\epsilon) = (0,0,\ldots).$$

If
$$u \in [\bar{n}]^*$$
 has $t(u) = (k_1, \dots, k_n)$ then

$$\sum_{w \ge u} x^{|w|} = \frac{1 - x}{1 - 2x + x^{n+1}} \prod_{k=1}^{n} \left(\frac{x^k - x^{n+1}}{1 - 2x + x^k} \right)^{t_k}.$$

Note: 1. Letting $n \to \infty$ in this corollary we get $u \in \mathbb{P}^*$ and the x^{n+1} terms in the product drop out. So

$$\sum_{N>0} c_N x^N = \sum_{w>\epsilon} x^{|w|} = \frac{1-x}{1-2x} \cdot 1 \quad \text{since } t(\epsilon) = (0,0,\ldots).$$

2. For $P \subseteq \mathfrak{S}$, let $\mathfrak{S}_n(P) = \{ \sigma \in \mathfrak{S}_n : \sigma \text{ avoids all } \pi \in P \}$ and $\mathfrak{S}(P) = \bigcup_{n \geq 0} \mathfrak{S}_n(P)$.

If $u \in [\bar{n}]^*$ has $t(u) = (k_1, \dots, k_n)$ then

$$\sum_{w \ge u} x^{|w|} = \frac{1 - x}{1 - 2x + x^{n+1}} \prod_{k=1}^{n} \left(\frac{x^k - x^{n+1}}{1 - 2x + x^k} \right)^{t_k}.$$

Note: 1. Letting $n \to \infty$ in this corollary we get $u \in \mathbb{P}^*$ and the x^{n+1} terms in the product drop out. So

$$\sum_{N>0} c_N x^N = \sum_{w>\epsilon} x^{|w|} = \frac{1-x}{1-2x} \cdot 1 \quad \text{since } t(\epsilon) = (0,0,\ldots).$$

2. For $P \subseteq \mathfrak{S}$, let $\mathfrak{S}_n(P) = \{ \sigma \in \mathfrak{S}_n : \sigma \text{ avoids all } \pi \in P \}$ and $\mathfrak{S}(P) = \bigcup_{n \geq 0} \mathfrak{S}_n(P)$. Now π is layered iff $\pi \in \mathfrak{S}(231, 312)$.

If $u \in [\bar{n}]^*$ has $t(u) = (k_1, \dots, k_n)$ then

$$\sum_{w \ge u} x^{|w|} = \frac{1 - x}{1 - 2x + x^{n+1}} \prod_{k=1}^{n} \left(\frac{x^k - x^{n+1}}{1 - 2x + x^k} \right)^{t_k}.$$

Note: 1. Letting $n \to \infty$ in this corollary we get $u \in \mathbb{P}^*$ and the x^{n+1} terms in the product drop out. So

$$\sum_{N\geq 0} c_N x^N = \sum_{w\geq \epsilon} x^{|w|} = \frac{1-x}{1-2x} \cdot 1 \quad \text{since } t(\epsilon) = (0,0,\ldots).$$

2. For $P \subseteq \mathfrak{S}$, let $\mathfrak{S}_n(P) = \{ \sigma \in \mathfrak{S}_n : \sigma \text{ avoids all } \pi \in P \}$ and $\mathfrak{S}(P) = \biguplus_{n \geq 0} \mathfrak{S}_n(P)$. Now π is layered iff $\pi \in \mathfrak{S}(231,312)$.

Corollary (B & S)

If π and π' are layered permutations with the same multiset of layer lengths then for all $n \ge 0$:

$$\#\mathfrak{S}_n(231,312,\pi) = \#\mathfrak{S}_n(231,312,\pi').$$

Outline

1. Is there a bijective proof of the Wilf equivalence in the previous corollary?

- 1. Is there a bijective proof of the Wilf equivalence in the previous corollary?
- 2. A *lower order ideal*, *L*, is a subset of a poset *P* such that

 $a \in L$ and $b \le a$ implies $b \in L$.

- 1. Is there a bijective proof of the Wilf equivalence in the previous corollary?
- 2. A *lower order ideal*, *L*, is a subset of a poset *P* such that

$$a \in L$$
 and $b \le a$ implies $b \in L$.

A *block* of a permutation $\pi \in \mathfrak{S}_n$ is an interval I such that $\pi(I)$ is an interval. The block is *trivial* if #I = 1 or n.

- 1. Is there a bijective proof of the Wilf equivalence in the previous corollary?
- 2. A *lower order ideal*, *L*, is a subset of a poset *P* such that

 $a \in L$ and $b \le a$ implies $b \in L$.

A *block* of a permutation $\pi \in \mathfrak{S}_n$ is an interval I such that $\pi(I)$ is an interval. The block is *trivial* if #I = 1 or n. A permutation is *simple* if it has no nontrivial blocks.

- 1. Is there a bijective proof of the Wilf equivalence in the previous corollary?
- 2. A *lower order ideal*, *L*, is a subset of a poset *P* such that

 $a \in L$ and $b \le a$ implies $b \in L$.

A *block* of a permutation $\pi \in \mathfrak{S}_n$ is an interval I such that $\pi(I)$ is an interval. The block is *trivial* if #I = 1 or n. A permutation is *simple* if it has no nontrivial blocks.

The next result follows from the work of Albert and Atkinson on simple permutations.

Theorem (Albert and Atkinson)

Every lower order ideal properly contained in $\mathfrak{S}(231)$ has a rational generating function.

- 1. Is there a bijective proof of the Wilf equivalence in the previous corollary?
- 2. A *lower order ideal*, *L*, is a subset of a poset *P* such that

 $a \in L$ and $b \le a$ implies $b \in L$.

A *block* of a permutation $\pi \in \mathfrak{S}_n$ is an interval I such that $\pi(I)$ is an interval. The block is *trivial* if #I = 1 or n. A permutation is *simple* if it has no nontrivial blocks.

The next result follows from the work of Albert and Atkinson on simple permutations.

Theorem (Albert and Atkinson)

Every lower order ideal properly contained in $\mathfrak{S}(231)$ has a rational generating function.

In fact, they give a construction to compute the generating function. Can this method be used to prove the Wilf equivalence? See also the work of Mansour and Egge.

$$k_j = l_{i_j}$$
 for $1 \le j \le r$.

$$k_j = l_{i_j}$$
 for $1 \le j \le r$.

Ex. If $A = \{a, b\}$, u = a b b a and w = b a a b a b a a then $u \le w$, for example, w = b a a b a b a a.

$$k_j = l_{i_j}$$
 for $1 \le j \le r$.

Ex. If $A = \{a, b\}$, u = a b b a and w = b a a b a b a a then $u \le w$, for example, w = b a a b a b a a.

Theorem (Björner and Reutenauer)

In subword order, $Z(u) = \sum_{w>u} w$ is rational.

$$k_j = l_{i_j}$$
 for $1 \le j \le r$.

Ex. If $A = \{a, b\}$, u = a b b a and w = b a a b a b a a then $u \le w$, for example, w = b a a b a b a a.

Theorem (Björner and Reutenauer)

In subword order, $Z(u) = \sum_{w>u} w$ is rational.

For any poset P, define *generalized subword order* on P^* by: If $u = k_1 \dots k_r$ and $w = l_1 \dots l_s$ then $u \leq_{P^*} w$ iff there is $l_{i_1} \dots l_{i_r}$ with

$$k_j \leq_P l_{i_i}$$
 for $1 \leq j \leq r$.

$$k_j = I_{i_j}$$
 for $1 \le j \le r$.

Ex. If $A = \{a, b\}$, u = a b b a and w = b a a b a b a a then $u \le w$, for example, w = b a a b a b a a.

Theorem (Björner and Reutenauer)

In subword order, $Z(u) = \sum_{w>u} w$ is rational.

For any poset P, define *generalized subword order* on P^* by: If $u = k_1 \dots k_r$ and $w = l_1 \dots l_s$ then $u \leq_{P^*} w$ iff there is $l_{i_1} \dots l_{i_r}$ with

$$k_j \leq_P l_{i_j}$$
 for $1 \leq j \leq r$.

P an antichain \Rightarrow P^* is subword order,

$$k_j = I_{i_j}$$
 for $1 \le j \le r$.

Ex. If $A = \{a, b\}$, u = a b b a and w = b a a b a b a a then $u \le w$, for example, w = b a a b a b a a.

Theorem (Björner and Reutenauer)

In subword order, $Z(u) = \sum_{w>u} w$ is rational.

For any poset P, define *generalized subword order* on P^* by: If $u = k_1 \dots k_r$ and $w = l_1 \dots l_s$ then $u \leq_{P^*} w$ iff there is $l_{i_1} \dots l_{i_r}$ with

$$k_j \leq_P l_{i_j}$$
 for $1 \leq j \leq r$.

P an antichain \Rightarrow P^* is subword order, P a chain \Rightarrow P^* is composition order.

$$k_j = I_{i_j}$$
 for $1 \le j \le r$.

Ex. If $A = \{a, b\}$, u = a b b a and w = b a a b a b a a then $u \le w$, for example, w = b a a b a b a a.

Theorem (Björner and Reutenauer)

In subword order, $Z(u) = \sum_{w>u} w$ is rational.

For any poset P, define *generalized subword order* on P^* by: If $u = k_1 \dots k_r$ and $w = l_1 \dots l_s$ then $u \leq_{P^*} w$ iff there is $l_{i_1} \dots l_{i_r}$ with

$$k_j \leq_P l_{i_j}$$
 for $1 \leq j \leq r$.

P an antichain \Rightarrow P^* is subword order, P a chain \Rightarrow P^* is composition order.

Theorem (B & S)

In generalized subword order, $Z(u) = \sum_{w>u} w$ is rational.

$$k_j = l_{i_j}$$
 for $1 \le j \le r$.

Ex. If $A = \{a, b\}$, u = a b b a and w = b a a b a b a a then $u \le w$, for example, w = b a a b a b a a.

Theorem (Björner and Reutenauer)

In subword order,
$$Z(u) = \sum_{w > u} w$$
 is rational.

For any poset P, define *generalized subword order* on P^* by: If $u = k_1 \dots k_r$ and $w = l_1 \dots l_s$ then $u \leq_{P^*} w$ iff there is $l_{i_1} \dots l_{i_r}$ with

$$k_j \leq_P l_{i_i}$$
 for $1 \leq j \leq r$.

P an antichain \Rightarrow P^* is subword order, P a chain \Rightarrow P^* is composition order.

Theorem (B & S)

In generalized subword order, $Z(u) = \sum_{w>u} w$ is rational.

4. One can also consider the Möbius function of P^* (Vatter and Sagan) and various interesting subposets of P^* (Goyt).

ÞAKKA YKKUR KÆRLEGA FYRIR!