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1. The First Definition

Given sets S,T and a function f : S — T, apply f
element-wise to objects built from S

EX. 1. If p=ajas...am is a word over S, possibly
with repetitions, then f(p) = f(a1)f(as) ... f(am).

2. If BC S then f(B) = {f(a) | a € B}.

Given two positive integers m,n € P, we will let
[m,n] ={m,m+1,...,n} and [n] = [1,n].

Now if § C IP has cardinality #S = n then the re-
duction map is the unique order-preserving bijection
rg: S — [n].
Ex. If S ={2,5,7,8} then

TS(Q) — 17 TS(S) — 27 TS(7> — 37 TS(8) = 4.

Ordinary pattern containment can be defined: Let
q € Gm, then p =ajasr...an € &, contains q if there
is a subword p’ = a;,a,,...a;, of p such that

rs(p') =q
where S = {a;,,a;,,---,a;,}



A partition w of a set S is a family of nonempty sets
B1,Bo,...,Bi such that y;B; = S. The B, are called
the blocks of = and the number of blocks is the
length of «, (7). We write =« = By /B>/ ... /B, 5,
e.g., 137/28/456/9 F [9]. Let

rln — {7T = [n]} aﬂd N = E‘J rln.
n>1

We say o is contained in w, ¢ C m, if each block of
o IS contained in some block of .

Ex. 28/3/46 C 137/28/456/9 because 28 C 28,
3 C 137, and 46 C 456.

Now w contains the pattern o, = 1 o, if there is a
partition 7’ C 7 with

re(n) =0¢

where 7’ - S.

Ex. If o = 13/2 then 7 = 14/236/5 contains six
copies of o: 14/2, 14/3, 26/4, 26/5, 36/4, 36/5.

We say w avoids o if m 2 o and let

Mp(o) ={r €Ny | 7 Ao} and N(o) = [ Mn(o).
n>1



2. Enumeration

w’l’b

Sequence (an)p>0 has egdf F(z) = > an— -
n>0 n:

J
Subset J C P has egf Fj(z) = ) x—l
jeJ J-

Theorem 1 Let

a; ;= #{m € Ny | I(x) =k and block sizes in J}.
Then

Z a‘] x" FJ(x)k
n>0 k!
Let
o0 n 0@ n
exp(z) = - exp(z) = -
=0 n! =1 n!
m - xpn m - xn
expp,(z) = - expm(z) = =
and

CnF(x) = the coefficient of z™/n! in F(x).



Theorem 2 (S) We have

n1/2/.../m) = {x | l(7r) < m}, (1)
#M,(1/2/.../m) = Cpexp,;,_1(eXp ). (2)
MN(12...m) = {n | #B<m VBen},(3)
#M,(12...m) = Cpexp(eXp,,—1z). (4)

Proof for 0 = 12...m. First, = 1 o iff there is a
block B of w with #2B > m proving (3). Also

#Mn(12...m) = Y ay;, where J=[m—1].

k>0
So by Theorem 1
> #Mn(12..m) ==Y 3 ol ‘””I
n>0 | k>0n>0 n:
o k
EXP,,
=3 p”,; . = exp(SDp_17). B

k>0
Call o and involution if all B € 0 have ##B = 1 or 2.
Corollary 3 (Klazar, S) We have
N(1/2/3) = {x | # has at most 2 blocks},
#M,(1/2/3)
M(123) {m | w is an involution},

#M,(123) = Z(;)(zz)!!

i>0
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Partition « is layered if it is of the form
m=[1,i]/li+1,5)/.../lk+ 1,nl.

Theorem 4 (S) We have
MN(13/2) = {=n | = is layered},
#M,(13/2)
MN(12/3) = {#r=B1/.../By | minB; =i Vi
and 3i with [k + 1,n] C B;},

(Z) +1.

on—1

#Mp(12/3)

Given o = Cq/.../C;+ [m] we let
o' =C1/.../Cwhere Cl={m+1—a | ac C;} Vi
Ex. o= 135/24/6 implies o/ = 642/53/1.

Proposition 5 (S) We have
N(¢") = {«' | =€)}, and
#MNn(c)) = #Nn(o) forn> 1.

Since (12/3)’ = 1/23, this completes the enumera-
tion of partitions avoiding a single pattern of length
at most three. Sets of patterns and refinements by
parity can also be enumerated.



3. The Stanley-Wilf Conjecture

Conjecture 6 (Stanley-Wilf) For every permuta-
tion pattern q the limit

: 1/n
nIE)noo #6n(q)
exists and is finite.

This is not always true of the limit

(5)

Theorem 7 (K) If o = 123 or 12/34, then (5) is
infinite.

Proof for o0 = 123. By Corollary 3 and Stirling

#MN,(123)/7 > pnl/n > o/m
for some constant C and large n. H

Since 7 J o implies My (7) O My(o), we have

Corollary 8 (K) The limit (5) is infinite if o 7 123
or o J112/34.

So the patterns for which we have not yet deter-
mined (5) are exactly those in (123,12/34)



Another description of the o € 11(123,12/34): Since
o avoids 123, it is an involution. To include the
other restriction, given a permutation p = ajas...an
we have a corresponding permutation partition

op = 1(a1 +n)/2(ax> +n)/ ... /n(an + n).
Ex. If p = 2431 then o, = 16/28/37/45.

An inflated permutation partition is o = 74 p such
that = consists of only singleton blocks and rg(p) is
a permutation partition where p - §.

Theorem 9 (K) 1. The inflated permutation
partitions are precisely those in M(123,12/34).

2. If for each permutation partition there is a
constant ¢ with My (op) < ™ for all large n, then the
same is true of inflated permutation partitions.

Theorem 10 (S) The limit (5) exists and is finite
for o = 1/2/.../m and for all partitions with at
most 3 elements except o = 123.



A limit either exists and is finite, exists and is in-
finite, or does not exist. Also #I,(o) < ™ for all
large n implies the limit is finite or does not exist.

Define o + [m] to be reducible if there is 57 with
0 <7 <m such that ¢ = 7 W p with

rH[j] and pkF[j+1,m].
Using Fekete’'s Lemma one can prove

Theorem 11 (S) For o irreducible, the limit (5)
exisits (and may be infinite).

Since permutation patterns are irreducible, this The-
orem implies Arratia’s result that the corresponding
limit exists for all permutations.

Putting all the evidence together, we conjecture

Conjecture 12 (K,S) For all o, the limit (5) ex-
ists. It is finite precisely for o € M,(123,12/34).

Notes: 1. Since p € G,(q) implies op € My(oq) We
have #TM,(0q) > #6,(q). SO the previous conjec-
ture implies the Stanley-Wilf conjecture.

2. Klazar has shown that for o € 1M,(123,12/34) we
have #MM,(0c) < w(n)™ where w(n) grows slowly.
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4. The Noonan-Zeilberger Conjecture

A sequence (an),>0 IS P-recursive if there are poly-
nomials Pg(n), P1(n),...,P.(n) (not all zero) such
that for all n € P

Po(n)an + P1(n)ay41+ -+ Pp(n)ay,4p, = 0.
EXx. an = n! is P-recursive: (n+ 1)an —a,41 = 0.

Conjecture 13 (Noonan-Zeilberger) For any per-
mutation q, the sequence a, = #6,(q) is P-recursive.

A series f(x) € Cl[[z]] is D-finite if there are polyno-
mials po(x),p1(x),...,pr(x) (not all zero) such that

po(x) f(x) + p1(x) f'(@) + - + pr(2) fF) (z) = 0.

Sequence (an)p>0 has ogf f(z) = > anz".
n>0

Theorem 14 (Jungen,Stanley) 1. (an)p>0 IS
P-recursive iff its ogf f(x) is D-finite.

2. If (an)p>0 and (bn),>0 are P-recursive then so

Corollary 15 (S) (an),>0 is P-recursive iff its egf
F(x) is D-finite.
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A series f(x) € C[[x]] is algebraic if there are polyno-
mials qo(x),q1(x),...,q.(x) (not all zero) such that

go(x) f(z) + q1(x) f(x)? + -+ qp(z) f(z)* = 0.

Theorem 16 (Stanley) If f(x) is D-finite and g(x)
is algebraic then f(g(x)) is D-finite.

Theorem 17 (S) If o is a pattern with at most 3
elements oro =1/2/.../m or o = 12...m then the
sequence an = #MNy(o) is P-recursive.

Proof for o = 12...m. We showed that

n
> #Ma(12...m)> = exp(eXPpy_12).
n>0 n!
Now €xp,,_1(x) is a polynomial and so algebraic.
Furthermore, f(z) = exp(xz) is D-finite since we
have f(z) — f'(x) = 0. So we are done by the pre-
vious Theorem and Corollary. |

Conjecture 18 (S) For any partition o, we have
that the sequence an, = #MNy(0) is P-recursive.
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5. The Second Definition

A sequence r = ajan...an Of positive integers is a
restricted growth function (RGF) of length n if

a; =1 and a; <1+ max;.;a; for i > 2.

et be the set of such functions and .
To connect with partitions, all # = B1/Bs/.../By
in this section will be ordered, i.e., indexed so that

min B; < Min By < ... < min By, (6)

Given w F [n] we construct a sequence rr = a1as...an
by letting a; = 5 iff ¢ € Bj.

Ex. If 7 = 137/28/456/9 then ry = 121333124,

Condition (6) forces rr to be an RGF and this map
IS a bijection I, «<— Rn.

Now r € R contains the pattern s, r > s, if there is
a subword r' = a;,a,, ...a;, Of r such that

re(r’) = s
where S = {a;,,a;,,---,a;,}
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In terms of partitions, w > o if the elements reducing
to the jth block of o come from B,L-j in w with

1<t <...<1.

Ex. If o = 13/2 then # = 14/236/5 > o in four
ways: 14/2, 14/3, 26/5, 36/5.

We say m RGF-avoids o if # %) o and let

Rpn(o) ={m ey | m# o} and R(o) = L—Ij Rn(0o).
n>1

Note that « > o implies # J o sO Rn(o) D Mp(o).
Many of the results for 1 have analogues for >.

Theorem 19 (S) If o - [3] then
#Rp(o) =271

except for o = 123 when

Rn(123) = M,(123).

Conjecture 20 (S) The analogues of the Stanley-
Wilf and Noonan-Zeilberger conjectures obtained by
replacing -1 with > everywhere are also true.
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6. More Open Problems

Associated with any ordered partition © we
have a permutation pr obtained by concatenating
the blocks where each block is written in decreasing
order.

Ex. If 7 = 14/236/5 then p, = 416325.

Note that if =« is layered then so is pr and any lay-
ered permutation is p;r for a unique w. Also, if o, 7
are layered then o C « iff o > w. These observa-
tions lead to the following analogue of a result of
Stromaquist.

Theorem 21 (S) Let o be layered. Among all el-
ements of I'l, which contain the maximum number
of copies of o (using either C or =) there is always
one which is layered.

What can be said about packing densities of parti-
tion patterns, especially layered ones?
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One can define generalized RGF-pattern con-
tainment by insisting that certain adjacent elements
of the pattern RGF must be adjacent in the con-
taining RGF a la Babson and Steingrimsson. What
can be said about the concepts we have addressed
in this context?

A poset is well partially ordered (WPQ) if
it contains neither an infinite descending chain nor
an infinite antichain. We have the following weak
analogue of a theorem of Atkinson, Murphy, and
RusSkuc.

Theorem 22 (S) The poset (IMN(0), <) is WPO ifo
has at most three elements with the exception of
(N(123), <) which is not WPO.

AMR actually give a characterization of the per-
mutations ¢ such that &(q) is WPO. It would be
interesting to do the same for partitions.
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