Probabilistic Proofs of Hooklength Formulas

Bruce Sagan
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027
sagan@math.msu.edu
www.math.msu.edu/~sagan

October 26, 2009

Outline

Let T be a rooted tree with n distinguishable vertices. We also use T for its vertex set.

 f^T = number of increasing labelings of T.

 f^T = number of increasing labelings of T.

 f^{T} = number of increasing labelings of T.

Ex.
$$T = \begin{bmatrix} L & 3 & 1 \\ 4 & 4 & 2 \\ 4 & 3 & 3 \end{bmatrix}$$
 2 $\begin{bmatrix} 1 & 1 \\ 4 & 4 \end{bmatrix}$ 4 $f^T = 3$

 f^{T} = number of increasing labelings of T.

The *hooklength* of a vertex *v* is

 h_{v} = number of descendents of v (including v).

 f^T = number of increasing labelings of T.

The *hooklength* of a vertex *v* is

 $h_v =$ number of descendents of v (including v).

 f^T = number of increasing labelings of T.

Ex.
$$T = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$L: 3 \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$2 \begin{pmatrix} 2 & 1 & 1 \\ 4 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$3 \begin{pmatrix} 2 & 1 & 1 \\ 4 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix}$$

$$f^{T} = 3$$

The *hooklength* of a vertex *v* is

$$h_v =$$
 number of descendents of v (including v).

Theorem (Hooklength Formula)

$$f^{T} = \frac{n!}{\prod_{v \in T} h_{v}}.$$

 f^T = number of increasing labelings of T.

The *hooklength* of a vertex *v* is

$$h_v =$$
 number of descendents of v (including v).

Theorem (Hooklength Formula)

$$f^T = \frac{n!}{\prod_{v \in T} h_v}.$$

- 1. There are also hooklength formulas for
 - 1.1 ordinary Young tableaux (Frame-Robinson-Thrall),

- 1. There are also hooklength formulas for
 - 1.1 ordinary Young tableaux (Frame-Robinson-Thrall),
 - 1.2 shifted Young tableaux (Knuth), and

- 1. There are also hooklength formulas for
 - 1.1 ordinary Young tableaux (Frame-Robinson-Thrall),
 - 1.2 shifted Young tableaux (Knuth), and
 - 1.3 *d*-complete posets (Proctor).

- There are also hooklength formulas for
 - 1.1 ordinary Young tableaux (Frame-Robinson-Thrall),
 - 1.2 shifted Young tableaux (Knuth), and
 - 1.3 *d*-complete posets (Proctor).
- 2. Probabilistic proofs of these formulas were given by
 - 2.1 Greene-Nijenhuis-Wilf (ordinary tableaux),

- 1. There are also hooklength formulas for
 - 1.1 ordinary Young tableaux (Frame-Robinson-Thrall),
 - 1.2 shifted Young tableaux (Knuth), and
 - 1.3 *d*-complete posets (Proctor).
- 2. Probabilistic proofs of these formulas were given by
 - 2.1 Greene-Nijenhuis-Wilf (ordinary tableaux),
 - 2.2 S (shifted tableaux),

- There are also hooklength formulas for
 - 1.1 ordinary Young tableaux (Frame-Robinson-Thrall),
 - 1.2 shifted Young tableaux (Knuth), and
 - 1.3 *d*-complete posets (Proctor).
- 2. Probabilistic proofs of these formulas were given by
 - 2.1 Greene-Nijenhuis-Wilf (ordinary tableaux),
 - 2.2 S (shifted tableaux),
 - 2.3 S-Yeh (trees),

- 1. There are also hooklength formulas for
 - 1.1 ordinary Young tableaux (Frame-Robinson-Thrall),
 - 1.2 shifted Young tableaux (Knuth), and
 - 1.3 *d*-complete posets (Proctor).
- 2. Probabilistic proofs of these formulas were given by
 - 2.1 Greene-Nijenhuis-Wilf (ordinary tableaux),
 - 2.2 S (shifted tableaux),
 - 2.3 S-Yeh (trees),
 - 2.4 Okamura (*d*-complete).

 $\mathcal{B}(n) = \text{ set of binary trees, } T, \text{ on } n \text{ vertices.}$

$$\mathcal{B}(n) = \text{ set of binary trees, } T, \text{ on } n \text{ vertices.}$$

Let

$$\mathcal{B}(n) = \text{ set of binary trees, } T, \text{ on } n \text{ vertices.}$$

Let

 $\mathcal{B}(n) = \text{ set of binary trees, } T, \text{ on } n \text{ vertices.}$

Let

$$\mathcal{B}(n) = \text{ set of binary trees, } T, \text{ on } n \text{ vertices.}$$

For any
$$n \geq 0$$
,

$$\sum_{T \in \mathcal{B}(n)} \prod_{v \in T} \frac{1}{h_v 2^{h_v - 1}} = \frac{1}{n!}.$$

$$\mathcal{B}(n) = \text{ set of binary trees, } T, \text{ on } n \text{ vertices.}$$

 $\mathcal{L}(n) = \text{ set of all increasing labelings, } L$, of trees in $\mathcal{B}(n)$.

Theorem (Han, 2008)

For any
$$n \ge 0$$
,

$$\sum_{T \in \mathcal{B}(n)} \prod_{v \in T} \frac{1}{h_v 2^{h_v - 1}} = \frac{1}{n!}.$$

Notes.

1. The hooklengths appear as exponents.

$$\mathcal{B}(n) = \text{ set of binary trees, } T, \text{ on } n \text{ vertices.}$$

Let

$$\mathcal{L}(n) = \text{ set of all increasing labelings, } L, \text{ of trees in } \mathcal{B}(n).$$

For any
$$n \ge 0$$
,

$$\sum_{T\in\mathcal{B}(n)}\prod_{v\in T}\frac{1}{h_v2^{h_v-1}}=\frac{1}{n!}.$$

Notes.

- 1. The hooklengths appear as exponents.
- 2. Han's proof is algebraic. Our proof is probabilistic.

Outline

For any $n \ge 0$,

$$\sum_{T\in\mathcal{B}(n)}\prod_{v\in T}\frac{1}{h_v2^{h_v-1}}=\frac{1}{n!}.$$

For any $n \ge 0$,

$$\sum_{T\in\mathcal{B}(n)}\prod_{v\in T}\frac{1}{h_v2^{h_v-1}}=\frac{1}{n!}.$$

Proof Multiplying the above equation by n! and using the Hooklength Formula, it suffices to show

$$\sum_{T \in \mathcal{B}(n)} f^T \prod_{v \in T} \frac{1}{2^{h_v - 1}} = 1.$$

For any $n \ge 0$,

$$\sum_{T\in\mathcal{B}(n)}\prod_{v\in T}\frac{1}{h_v2^{h_v-1}}=\frac{1}{n!}.$$

Proof Multiplying the above equation by n! and using the Hooklength Formula, it suffices to show

$$\sum_{T \in \mathcal{B}(n)} f^T \prod_{v \in T} \frac{1}{2^{h_v - 1}} = 1.$$

So it suffices to find an algorithm generating each $L \in \mathcal{L}(n)$ such that

(I) prob $L = \prod_{v \in T} 1/2^{h_v-1}$ if L labels T, and

For any $n \ge 0$,

$$\sum_{T\in\mathcal{B}(n)}\prod_{v\in T}\frac{1}{h_v2^{h_v-1}}=\frac{1}{n!}.$$

Proof Multiplying the above equation by n! and using the Hooklength Formula, it suffices to show

$$\sum_{T \in \mathcal{B}(n)} f^T \prod_{v \in T} \frac{1}{2^{h_v - 1}} = 1.$$

So it suffices to find an algorithm generating each $L \in \mathcal{L}(n)$ such that

- (I) prob $L = \prod_{v \in T} 1/2^{h_v-1}$ if L labels T, and
- (II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L = 1$.

- (I) prob $L = \prod_{v \in T} 1/2^{h_v 1}$ if L labels T, and
- (II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L = 1$.

- (I) prob $L = \prod_{v \in T} 1/2^{h_v-1}$ if L labels T, and
- (II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L = 1$.

 d_w = length of the unique root-to-w path.

- (I) prob $L = \prod_{v \in T} 1/2^{h_v-1}$ if L labels T, and
- (II) $\sum_{L\in\mathcal{L}(n)}\operatorname{prob} L=1$.

 d_w = length of the unique root-to-w path.

Algorithm. (a) Let *L* consist of a root labeled 1.

- (I) prob $L = \prod_{v \in T} 1/2^{h_v-1}$ if L labels T, and
- (II) $\sum_{L\in\mathcal{L}(n)}\operatorname{prob} L=1$.

 d_w = length of the unique root-to-w path.

Algorithm. (a) Let L consist of a root labeled 1. (b) While |L| < n, pick a leaf w to be added to L with label |L| + 1 and prob $w = 1/2^{d_w}$.

- (I) prob $L = \prod_{v \in T} 1/2^{h_v-1}$ if L labels T, and
- (II) $\sum_{L\in\mathcal{L}(n)}\operatorname{prob} L=1$.

 d_w = length of the unique root-to-w path.

Algorithm. (a) Let L consist of a root labeled 1.

- (b) While |L| < n, pick a leaf w to be added to L with label
- |L| + 1 and prob $w = 1/2^{d_w}$.
- (c) Output L.

- (I) prob $L = \prod_{v \in T} 1/2^{h_v-1}$ if L labels T, and
- (II) $\sum_{L\in\mathcal{L}(n)}\operatorname{prob} L=1$.

 d_w = length of the unique root-to-w path.

Algorithm. (a) Let *L* consist of a root labeled 1.

- (b) While |L| < n, pick a leaf w to be added to L with label
- |L| + 1 and prob $w = 1/2^{d_w}$.
- (c) Output L.

Ex.
$$n = 3$$

- (I) prob $L = \prod_{v \in T} 1/2^{h_v-1}$ if L labels T, and
- (II) $\sum_{L\in\mathcal{L}(n)}\operatorname{prob} L=1$.

 d_w = length of the unique root-to-w path.

- (b) While |L| < n, pick a leaf w to be added to L with label
- |L|+1 and prob $w=1/2^{d_w}$.
- (c) Output L.

Ex.
$$n = 3$$

- (I) prob $L = \prod_{v \in T} 1/2^{h_v-1}$ if L labels T, and
- (II) $\sum_{L\in\mathcal{L}(n)}\operatorname{prob} L=1$.

 d_w = length of the unique root-to-w path.

- (b) While |L| < n, pick a leaf w to be added to L with label |L| + 1 and prob $w = 1/2^{d_w}$.
- (c) Output L.

Ex.
$$n = 3$$

prob
$$L = 1$$

- (I) prob $L = \prod_{v \in T} 1/2^{h_v-1}$ if L labels T, and
- (II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L = 1$.

 d_w = length of the unique root-to-w path.

- (b) While |L| < n, pick a leaf w to be added to L with label |L| + 1 and prob $w = 1/2^{d_w}$.
- (c) Output L.

Ex.
$$n = 3$$

L:

$$\frac{1}{2} \circlearrowleft \frac{1}{2}$$

prob
$$L = 1$$

- (I) prob $L = \prod_{v \in T} 1/2^{h_v-1}$ if L labels T, and
- (II) $\sum_{L\in\mathcal{L}(n)}\operatorname{prob} L=1$.

 d_w = length of the unique root-to-w path.

- (b) While |L| < n, pick a leaf w to be added to L with label |L| + 1 and prob $w = 1/2^{d_w}$.
- (c) Output L.

Ex.
$$n = 3$$
 $L: \frac{1}{2}$

prob
$$L = 1$$

- (I) prob $L = \prod_{v \in T} 1/2^{h_v-1}$ if L labels T, and
- (II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L = 1$.

 d_w = length of the unique root-to-w path.

- (b) While |L| < n, pick a leaf w to be added to L with label
- |L| + 1 and prob $w = 1/2^{d_w}$.
- (c) Output L.

Ex.
$$n = 3$$
 $L: \frac{1}{5}$

prob
$$L = 1$$
 ·

- (I) prob $L = \prod_{v \in T} 1/2^{h_v-1}$ if L labels T, and
- (II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L = 1$.

 d_w = length of the unique root-to-w path.

- (b) While |L| < n, pick a leaf w to be added to L with label
- |L| + 1 and prob $w = 1/2^{d_w}$.
- (c) Output L.

Ex.
$$n = 3$$

$$L: \frac{1}{2} \circ \cdot \cdot \circ \frac{1}{2}$$

$$\frac{1}{2^2} \circ \cdot \circ \cdot \circ \frac{1}{2^2}$$

$$prob L = 1$$

- (I) prob $L = \prod_{v \in T} 1/2^{h_v-1}$ if L labels T, and
- (II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L = 1$.

 d_w = length of the unique root-to-w path.

- (b) While |L| < n, pick a leaf w to be added to L with label
- |L| + 1 and prob $w = 1/2^{d_w}$.
- (c) Output L.

- (I) prob $L = \prod_{v \in T} 1/2^{h_v-1}$ if L labels T, and
- (II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L = 1$.

 d_w = length of the unique root-to-w path.

- (b) While |L| < n, pick a leaf w to be added to L with label
- |L|+1 and prob $w=1/2^{d_w}$.
- (c) Output L.

- (I) prob $L = \prod_{v \in T} 1/2^{h_v-1}$ if L labels T, and
- (II) $\sum_{L\in\mathcal{L}(n)}\operatorname{prob} L=1$.

 d_w = length of the unique root-to-w path.

- (b) While |L| < n, pick a leaf w to be added to L with label
- |L|+1 and prob $w=1/2^{d_w}$.
- (c) Output L.

Ex.
$$n = 3$$

$$L: \frac{1}{2} \circ \cdots \circ \frac{1}{2}$$

$$\frac{1}{2^2} \circ \cdots \circ \frac{1}{2}$$

$$\frac{1}{2^2} \circ \cdots \circ \frac{1}{2^2}$$

$$prob L = 1 \qquad \cdot \qquad \frac{1}{2} \qquad \cdot \qquad \frac{1}{2^2}$$

- (I) prob $L = \prod_{v \in T} 1/2^{h_v-1}$ if L labels T, and
- (II) $\sum_{L\in\mathcal{L}(n)}\operatorname{prob} L=1$.

 d_w = length of the unique root-to-w path.

- (b) While |L| < n, pick a leaf w to be added to L with label
- |L|+1 and prob $w=1/2^{d_w}$.
- (c) Output L.

Ex.
$$n = 3$$

$$L: \frac{1}{\frac{1}{2}} \circ \cdot \cdot \circ \frac{1}{2}$$

$$\frac{1}{\frac{1}{2^2}} \circ \cdot \circ \frac{1}{\frac{1}{2^2}}$$

$$\frac{1}{\frac{1}{2^2}} \circ \cdot \circ \frac{1}{\frac{1}{2^2}}$$

$$\frac{1}{2^2} \circ \cdot \circ \frac{1}{2^2} = \prod_{v \in T} \frac{1}{2^{h_v - 1}}$$

Proof Let *w* be the node labeled *n* in *L* and let L' = L - w.

Proof Let *w* be the node labeled *n* in *L* and let L' = L - w.

The hooklengths in L and L' are related by

$$h_v = \left\{ egin{array}{ll} h_v' + 1 & ext{if } v ext{ is on the unique root-to-} w ext{ path } P, \\ h_v' & ext{else.} \end{array}
ight.$$

Proof Let *w* be the node labeled *n* in *L* and let L' = L - w.

The hooklengths in L and L' are related by

$$h_v = \left\{ egin{array}{ll} h_v' + 1 & ext{if } v ext{ is on the unique root-to-} w ext{ path } P, \\ h_v' & ext{else.} \end{array}
ight.$$

Note that there are d_w vertices on $P \cap L'$.

Proof Let *w* be the node labeled *n* in *L* and let L' = L - w.

The hooklengths in L and L' are related by

$$h_v = \left\{ egin{array}{ll} h_v' + 1 & ext{if } v ext{ is on the unique root-to-} w ext{ path } P, \\ h_v' & ext{else}. \end{array}
ight.$$

Note that there are d_w vertices on $P \cap L'$. So

 $prob L = prob w \cdot prob L'$

Proof Let w be the node labeled n in L and let L' = L - w.

The hooklengths in L and L' are related by

$$h_v = \left\{ egin{array}{ll} h_v' + 1 & ext{if } v ext{ is on the unique root-to-} w ext{ path } P, \ h_v' & ext{else}. \end{array}
ight.$$

Note that there are d_w vertices on $P \cap L'$. So

prob
$$L = \operatorname{prob} w \cdot \operatorname{prob} L' = \frac{1}{2^{d_w}} \prod_{v \in I'} \frac{1}{2^{h_v' - 1}}$$

Proof Let *w* be the node labeled *n* in *L* and let L' = L - w.

The hooklengths in L and L' are related by

$$h_v = \left\{ egin{array}{ll} h_v' + 1 & ext{if } v ext{ is on the unique root-to-} w ext{ path } P, \\ h_v' & ext{else}. \end{array}
ight.$$

Note that there are d_w vertices on $P \cap L'$. So

$$\operatorname{prob} L = \operatorname{prob} w \cdot \operatorname{prob} L' = \frac{1}{2^{d_w}} \prod_{v \in L'} \frac{1}{2^{h_v' - 1}} = \prod_{v \in L} \frac{1}{2^{h_v - 1}}.$$

Outline

 $\mathcal{O}(n) = \text{ set of ordered trees on } n \text{ vertices.}$

 $\mathcal{O}(n) = \text{ set of ordered trees on } n \text{ vertices.}$

If m is a variable and c_v is the number of children of v in T, let

$$\operatorname{wt}(T) = \prod_{v \in T} \binom{m}{c_v}.$$

 $\mathcal{O}(n) = \text{ set of ordered trees on } n \text{ vertices.}$

If m is a variable and c_v is the number of children of v in T, let

$$\operatorname{wt}(T) = \prod_{v \in T} \binom{m}{c_v}.$$

Theorem (Yang, 2008)

For any n

$$\sum_{T \in \mathcal{O}(n)} \operatorname{wt}(T) \prod_{v \in T} \frac{1}{h_v m^{h_v - 1}} = \frac{1}{n!}.$$

$$\mathcal{O}(n) = \text{ set of ordered trees on } n \text{ vertices.}$$

If m is a variable and c_v is the number of children of v in T, let

$$\operatorname{wt}(T) = \prod_{v \in T} \binom{m}{c_v}.$$

Theorem (Yang, 2008)

For any n

$$\sum_{T \in \mathcal{O}(n)} \operatorname{wt}(T) \prod_{v \in T} \frac{1}{h_v m^{h_v - 1}} = \frac{1}{n!}.$$

Note that if m = 2 then

$$\binom{m}{c_v} = \binom{2}{c_v} = \text{ \# of ways to make the children of } v \text{ binary.}$$

$$\mathcal{O}(n) = \text{ set of ordered trees on } n \text{ vertices.}$$

If m is a variable and c_v is the number of children of v in T, let

$$\operatorname{wt}(T) = \prod_{v \in T} \binom{m}{c_v}.$$

Theorem (Yang, 2008)

For any n

$$\sum_{T\in\mathcal{O}(n)}\operatorname{wt}(T)\prod_{v\in T}\frac{1}{h_vm^{h_v-1}}=\frac{1}{n!}.$$

Note that if m = 2 then

$$\binom{m}{c_{v}} = \binom{2}{c_{v}} = \text{ \# of ways to make the children of } v \text{ binary.}$$

So wt(T) becomes the number of ways to make T binary and Yang's result implies Han's.

(b) One can also generalize Han's formula and the probabilitic proof by considering *n*-vertex subtrees of a given infinite tree.

- (b) One can also generalize Han's formula and the probabilitic proof by considering *n*-vertex subtrees of a given infinite tree.
- (c) With Carla Savage, we are considering probabilistic proofs of q-hooklength formulas of Björner and Wachs and q, t-analogues of Novelli and Thibon.

- (b) One can also generalize Han's formula and the probabilitic proof by considering *n*-vertex subtrees of a given infinite tree.
- (c) With Carla Savage, we are considering probabilistic proofs of q-hooklength formulas of Björner and Wachs and q, t-analogues of Novelli and Thibon.
- (d) Han also proved the following result.

For any n,

$$\sum_{T \in \mathcal{B}(n)} \prod_{v \in T} \frac{1}{(2h_v + 1)2^{2h_v - 1}} = \frac{1}{(2n + 1)!}.$$

- (b) One can also generalize Han's formula and the probabilitic proof by considering *n*-vertex subtrees of a given infinite tree.
- (c) With Carla Savage, we are considering probabilistic proofs of *q*-hooklength formulas of Björner and Wachs and *q*, *t*-analogues of Novelli and Thibon.
- (d) Han also proved the following result.

For any n,

$$\sum_{T \in \mathcal{B}(n)} \prod_{v \in T} \frac{1}{(2h_v + 1)2^{2h_v - 1}} = \frac{1}{(2n + 1)!}.$$

Is there a probabilistic proof?

- (b) One can also generalize Han's formula and the probabilitic proof by considering *n*-vertex subtrees of a given infinite tree.
- (c) With Carla Savage, we are considering probabilistic proofs of *q*-hooklength formulas of Björner and Wachs and *q*, *t*-analogues of Novelli and Thibon.
- (d) Han also proved the following result.

For any n,

$$\sum_{T \in \mathcal{B}(n)} \prod_{v \in T} \frac{1}{(2h_v + 1)2^{2h_v - 1}} = \frac{1}{(2n + 1)!}.$$

Is there a probabilistic proof? Note that if \hat{T} is the completion of T, i.e., T with all possible leaves added, then

$$f^{\hat{T}} = \frac{(2n+1)!}{\prod_{v \in T} (2h_v + 1)}.$$

- (b) One can also generalize Han's formula and the probabilitic proof by considering *n*-vertex subtrees of a given infinite tree.
- (c) With Carla Savage, we are considering probabilistic proofs of q-hooklength formulas of Björner and Wachs and q, t-analogues of Novelli and Thibon.
- (d) Han also proved the following result.

For any n,

$$\sum_{T \in \mathcal{B}(n)} \prod_{v \in T} \frac{1}{(2h_v + 1)2^{2h_v - 1}} = \frac{1}{(2n + 1)!}.$$

Is there a probabilistic proof? Note that if \hat{T} is the completion of T, i.e., T with all possible leaves added, then

$$f^{\hat{T}} = \frac{(2n+1)!}{\prod_{v \in T} (2h_v + 1)}.$$

(e) What is the analogue for tableaux of Han's formulas?

