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1. There are also hooklength formulas for
1.1 ordinary Young tableaux (Frame-Robinson-Thrall),
1.2 shifted Young tableaux (Knuth), and
1.3 d-complete posets (Proctor).

2. Probabilistic proofs of these formulas were given by

2.1 Greene-Nijenhuis-Wilf (ordinary tableaux),
2.2 S (shifted tableaux),
2.3 S-Yeh (trees),

2.4 Okamura (d-complete).
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Foranyn> 0, > H 2hv - = 1_.
TeB(n) veT
Notes.
1. The hooklengths appear as exponents.
2. Han’s proof is algebraic. Our proof is probabilistic.
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and a similar probabilistic proof works. Let

O(n) = set of ordered trees on n vertices.
If mis a variable and ¢, is the number of children of vin T, let
m
mm:H<)
veT Cv

Theorem (Yang, 2008)
Forany n

1 1
E:W”Hmﬁﬁ:m O

TeO(n) veT

Note that if m = 2 then

(m) = (2) = # of ways to make the children of v binary.
Cy Cy

So wt( T) becomes the number of ways to make T binary and
Yang’s result implies Han’s.
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Is there a probabilistic proof? Note that if T is the completion of
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(e) What is the analogue for tableaux of Han’s formulas?



