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“Protean” means changeable. From Proteus, a Greek god of the
sea and water.
“Chromatic” means having to do with color.

Proteus A colorful annulus



Let G be a finite graph with vertices V and edges E .

Ex.

G =
x w

u v
V = {u, v ,w , x}
E = {uv , ux , vw , vx}

A coloring of G is a function c : V → {c1, . . . , ct}. The coloring is
proper if

uv ∈ E =⇒ c(u) ̸= c(v).

Ex.
proper, not proper, χ(G ) = 3.

The chromatic number of G is

χ(G ) = smallest t such that there is a proper c : V → {c1, . . . , ct}.

Theorem (Four Color Theorem, Appel-Haken, 1976)

If G is planar (can be drawn in the plane without edge crossings)
then χ(G ) ≤ 4.



Kenneth Appel Wolfgang Haken



For a positive integer t, the chromatic polynomial of G is

P(G ) = P(G , t) = # of proper colorings c : V → {c1, . . . , ct}.

Ex. Coloring vertices in the order u, v ,w , x gives choices

x w

u v
t t − 1

t − 1t − 2

P(G , t) = t(t − 1)(t − 1)(t − 2)

= t4 − 4t3 + 5t2 − 2t

Note 1. This is a polynomial in t.
2. χ(G ) is the smallest positive integer with P(G , χ(G )) > 0.
3. P(G , t) need not be a product of factors t − k for integers k .

Ex. Coloring vertices in the order u, v ,w , x gives choices

x w

u v
t t − 1

t − 1?



If G = (V ,E ) is a graph and e ∈ E then let

G \ e = G with e deleted.

G/e = G with e contracted to a vertex ve .

Any multiple edge in G/e is replaced by a single edge.

Ex.

G = e
x w

u v

G \ e =

x w

u v

G/e =

w

u

ve

Lemma (Deletion-Contraction, DC)

If G = (V ,E ) is any graph and e ∈ E then

P(G , t) = P(G \ e; t)− P(G/e; t).

Proof.
Let e = vx . It suffices to show P(G \ e) = P(G ) + P(G/e).

P(G \ e) = (# of proper c : G \ e → {c1, . . . , ct} with c(v) ̸= c(x))

+ (# of proper c : G \ e → {c1, . . . , ct} with c(v) = c(x))

= P(G ) + P(G/e)

as desired.



P(G , t) = P(G \ e; t)− P(G/e; t).

Theorem (Birkhoff, 1912)

For any graph G = (V ,E ), P(G , t) is a polynomial in t.

Proof.
Let |V | = n, |E | = m. Induct on m. If m = 0 then P(G ) = tn.
If m > 0, then pick e ∈ E . Both G \ e and G/e have fewer edges
than G . So by DC and induction

P(G ) = P(G\e)−P(G/e) = polynomial−polynomial = polynomial

as desired.

Ex.
P

( e )
= P

( )
− P

( )
= t(t − 1)3 − t(t − 1)(t − 2)

= t(t − 1)(t2 − 3t + 3).



George David Birkhoff



An orientation of graph G = (V ,E ) is a directed graph O obtained
by replacing each uv ∈ E by one of the arcs u⃗v or v⃗u. So the
number of orientations of G is 2|E |. A directed cycle of O is a
sequence of distinct vertices v1, v2, . . . , vk with ⃗vivi+1 an arc for all
i modulo k . Orientation O is acyclic if it has no directed cycles.

Ex.

G = has orientation O = which is acyclic.

# of acyclic orientations of G

= (# for the triangle)(# for the remaining edge)

= (23 − 2)(2) = 12.

P(G ,−1) = (−1)4 − 4(−1)3 + 5(−1)2 − 2(−1) = 12.

Theorem (Stanley, 1973)

For any graph G with |V | = n,

P(G ,−1) = (−1)n(# of acyclic orientations of G ).

Note: Blass and S (1986) gave a bijective proof of this theorem.



Richard P. Stanley Andreas Blass



A hyperplane in Rn is a subspace H with dimH = n − 1. A
hyperplane arrangement is a set of hyperplanes A = {H1, . . . ,Hk}.
The regions of A are the connected components of Rn − ∪iHi .

Ex. A = {y = 2x , y = −x} ⊂ R2.
# of regions of A = 4. y = −x

y = 2x

Let [n] = {1, 2, . . . , n}. Graph G with V = [n] has arrangement

A(G ) = {xi = xj : ij ∈ E}.

Ex.

G =

2 3

1 A(G ) = {x1 = x2, x1 = x3} ⊂ R3.

# of regions of A(G ) = 4.

P(G , t) = t(t − 1)2 =⇒ P(G ,−1) = −(−2)2 = −4.

Theorem (Zaslavsky, 1975)

For any graph G with V = [n],

P(G ,−1) = (−1)n(# of regions of A(G )).

There is a bijection: acyclic orientations of G ↔ regions of A(G ).



Thomas Zaslavsky



Let G be a graph with V = [n] and F be a spanning forest (an
acyclic subgraph using all the vertices of G ). Then F is increasing
if the vertices on any path of F starting at the minimum vertex of
its connected component form an increasing sequence.

Ex.

4 3

1 2

G

4 3

1 2

F increasing
4 3

1 2

F not increasing

Define

isfm(G ) = # of increasing spanning forests of G with m edges.

and

ISF(G , t) =
n−1∑
m=0

(−1)m isfm(G )tn−m.



isfm(G ) = # of increasing spanning forests of G with m edges.

ISF(G ) = ISF(G , t) =
∑
m≥0

(−1)m isfm(G )tn−m.

4 3

1 2

G =

Ex.

4 3

1 2
not increasing:

isf0(G ) = 1
isf1(G ) = |E | = 4

isf2(G ) =

(
4

2

)
− 1 = 5

isf3(G ) =

(
4

3

)
− 2 = 2

isf4(G ) = 0
ISF(G ) = t4 − 4t3 + 5t2 − 2t = t(t − 1)2(t − 2).



Let G be a graph with vertex set V = [n]. For j ∈ [n] define

Vj = {i ∈ V | i < j and ij ∈ E}.

4 3

1 2

G =

Ex.

V1 = ∅,
V2 = {1} because 12 ∈ E ,
V3 = {2} because 23 ∈ E ,
V4 = {1, 2} because 14, 24 ∈ E
and

(t−|V1|)(t−|V2|)(t−|V3|)(t−|V4|) = t(t−1)2(t−2) = ISF(G ).

Theorem (Hallam-S, 2014)

Let G have V = [n] and Vj as defined above. Then

ISF(G , t) =
n∏

j=1

(t − |Vj |).



Joshua Hallam



Vj = {i ∈ V | i < j and ij ∈ E}.

When is ISF(G , t) = P(G , t)?

Theorem (Hallam-S, 2014)

Let G be a graph with V = [n]. Then P(G , t) = ISF(G , t) if and
only if the induced subgraphs G [Vj ] are cliques for 1 ≤ j ≤ n.

Ex.

G =

4 3

1 2

G [V1] = G [∅]

∅

G [V2] = G [1]

1

G [V3] = G [2]

2

G [V4] = G [1, 2]

1 2

This clique condition is called a perfect elimination order .



1. P(G , t) for negative t. Let G be a graph with acyclic
orientation O. Let t be a positive integer and
c : V → {1, 2, . . . , t} be a coloring. Call (O, c) compatible if

u⃗v ∈ O =⇒ c(u) ≤ c(v).

Theorem (Stanley, 1973)

Let G have |V | = n and let t be a positive integer. Then

P(G ,−t) = (−1)n(# of compatible pairs (O, c)).

2. Arbitrary hyperplanes. Any hyperplane arrangement A has an
associated characteristic polynomial ch(A, t). If A = A(G ) then
ch(A, t) = P(G , t).

Theorem (Zaslavsky, 1975)

For any hyperplane arrangement A in Rn

ch(A,−1) = (−1)n(# of regions of A).



3. Symmetric functions. Consider variables x = {x1, x2, x3, . . . }.
A power series in x is symmetric if it is invariant all under
permutations of variables. The chromatic symmetric function of G
with V = {v1, . . . , vn} is

X (G ) = X (G , x) =
∑
c

xc(v1) . . . xc(vn)

where the sum is over all proper colorings c : V → Z+. This is a
symmetric function in the variables x. Setting x1 = · · · = xt = 1
and xi = 0 for i > t gives X (G ; x) = P(G ; t).

Theorem (Stanley, 1995)

Let eλ be the elementary symmetric function corresponding to λ.
If X (G ) =

∑
λ cλeλ, then

# of acyclic orientations of G with k sinks =
∑

ℓ(λ)=k

cλ.

where ℓ is the length function.

Unfortunately, X (G ) does not satisfy a DC Lemma. Using
symmetric functions in noncommuting variables (Rosas-S) one can
derive such a lemma (Gebhard-S).



Mercedes Rosas David Gebhard



Jeremy Martin



4. More on increasing forests. Hallam, Martin, and S (2018)
have extended these results to simplicial complexes of arbitrary
dimension d . When d = 1 one recovers the theorems for graphs.

5. Log concavity. A polyomial P(t) = a0 + a1t + · · ·+ ant
n is log

concave if
a2k ≥ ak−1ak+1

for all 0 < k < n. Using deep methods from algebraic geometry
(Chern classes, etc.), Huh has proven the following.

Theorem (Huh, 2013)

For any graph G , the polynomial P(G , t) is log concave.

Adiprasito, Huh, and Katz gave a combinatorial Hodge Theory
proof of the Heron-Rota-Welsh conjecture which generalizes Huh’s
result to any matroid.



Karim Adiprasito June Huh Eric Katz



¡GRACIAS POR

ESCUCHAR!
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