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Motivation and Introduction
I. Number Theory. The number-theoretic Mobius
function is u : Z~g — Z defined as

0 if n is not square free,
(—=1)* if n = product of k distinct primes,

p(n) = {

The importance of u lies in the number-theoretic
Mobius Inversion Theorem.

Theorem 1 Let f,g: Z~o — Z satisfy
f(n) =) g(d)

d|n
for all n € Z~q. Then

g(n) = u(n/d)f(d). l

d|n

II. Combinatorics. A very useful tool is the Principle
of Inclusion-Exclusion or PIE.

Theorem 2 Let S be a finite set and S1,...,5, C S.

n
S— U S|l = [SI— > IS+ D> [|sinSy
i=1

1<i<n 1<i1<y<n

— DY N S
1=1
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III. Theory of Finite Differences. If one takes a
function f : Z>g — C then there is an analog of the
derivative, namely the difference operator

Af(n) =f(n) — f(n—1)

(where f(—1) = 0 by definition), and an analog of
the integral, namely the summation operator

Sfn) =) f(n).
i=0

The Fundamental Theorem of the Difference Cal-
culus then states

Theorem 3 (FTDC) If f : Z>og — C then

ASf(n) = f(n). -

One of the advantages of the combinatorial MObius
function is that its inversion theorem unifies and
generalizes the previous three results. In addition, it
makes the number-theoretic definition transparant,
encodes topological information about poets, and
has even been used to bound the running time of
certain algorithms.



Mobius functions of posets

Let P be a finite poset (partially ordered set) which
is a set P with an order relation < satisfying the
three axioms for all z,y, z € P:

1. (reflexsive) z < x,

2. (antisymmetry) z <y and y < x implies z = v,

3. (transitivity) z <y and y < z implies z < z,

A poset is represented by its Hasse diagram which
IS @ graph whose vertices are the elements of P and
with an edge from z up to y if = is covered by y
(i.e., z <y and there is no z with =z < z < y).



Examples:

1. The chain, Cy, consists of the integers {0, 1,...,n}
ordered in the usual manner.

2. The Boolean algebra, B, has as elements all
subsets of [n] := {1,2,...,n} and C as order
relation.

3. The divisor poset, Dy, consists of all d|n ordered
by ¢ < d if ¢[d.

{1,2, 3}
3e 18
20 S 9
1le 2 3
Oe 1
C3 B3 Dis

If P has a unique minimal element then it will be
denoted 0 = Op, and if it has a unique maximal
element then we will use the notation 1 = 1p.
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If P has a O then its Mébius function, u: P — Z, is
defined recursively by

(z) = 1 if x =0,
K — Dy<z p(y) if x> 0.
Equivalently
> u(y) =6,
y<x

where 53j 5 is the Kronecker delta.

Computations: It is immediate directly from the
definition of u that in C) we have

1 ifx=0
u(z) =< -1 ifz=1
0O ifx>2

1. If z € By, then p(z) = (—1)I*l.

2. If x € Dy then u(x) is the number theory func-
tion.



If P,QQ are posets then order P x Q componentwise.
Proposition 4 If P x Q has Md&bius function p then
pw(z,y) = pp(x)ng(y)

Proof. It suffices to show that p/(z,y) := pp(z)pg(y)
satisfies the defining equation for pu.

> o w(ab) = > up(a)pg(b)
(a,b)<(z,y) (a,0)<(z,y)
= Y wup(a) ) pod)
a<lzx b<y
— 537?6P5y70@ = 5(£C,y),(6P,GQ) =

P and Q are isomorphic, P = @, if there is a bijection
f: P — Q with both f and f_1 order-preserving.

Proposition b If f : P — Q is an isomorphism then
pp(z) = pe(f(z)). =

1. By is isomorphic as a poset to the n-fold product
(C1)™ where a set corresponds to its bit-string. Now
for each bit u(0) = 1,u(1) = —1, so u(z) = (=1)l=l.

2. If n has prime factorization n = [[;p,’ then
we have an isomorphism D, £ x;Cp,. SO p,* con-
tributes -1 or O to the product for u depending on
whether n; =1 or n; > 2.



The Mobius Inversion Theorem (MIT)

It is convenient to extend the definition of u. If
x <y in P then we have the interval

[z,y] ={z€P : <2<y}
Let Int P denote the set of intervals of P.

If P is any finite poset, then its Mobius function,
u:IntP — Z, is defined recursively by

(z.y) = 1 if x =y,
HAE Y _Zx§z<yﬂ(xaz) if z <uy.

Equivalently
> p(z,z) = bzy.
rlzy

So if P has a 0 then u(x) = u(0,z). Furthermore,
we can consider [z,y] as a poset in it's own right
with = = O, 1 and in this poset the new definition
reduces to the old one.

Note that our previous computations also give the
two-variable version of u since in all cases an interval
[x,y] in P, (P = C, B, or D) satisfies

[z, y] = Py
for some k < n.



Theorem 6 Let P be a poset and f,qg . P — C.

MIT1 If for all x € P we have f(z) = > ,<,g(y) then
g(z) = ) ply,z)f(y).

y<zx

MIT2 If for all z € P we have f(x) = > ,>,9(y) then
g(x) = ) w(z,y)f(y).

Yy>T

Proof. We prove MIT2 as MIT1 is similar.
o wlz,)fy) = > ulz,y) ) g(z)

y>x (T z>y
= > g9 > w=y)
z>x r<y<z
— Zg(z)5x,z
zeP
= g(=x). |

Note (a) C above can be replaced by any vector
space.

(b) The converses of MIT1 & 2 are also true.

It is now easy to obtain the three theorems from the
introduction as corollaries by using Mobius inversion
over Dy, By, and Cp, respectively.



I If f(m) = Zd|mg(d) for all m then in D, we have
f(m) = > 4<mg(d). So by MIT and [d,m] = Dy yd

gm) = 3 w(d,m)f(d) = ) plm/d)f(d).

d<m d|m

II. For the PIE, given S1,...,5, C S and x € By, let
Sz = NicySi- Define f,g: Bn — Z>g by

g(x) = |[Sz— U Sil-
For example in B»
f(0) =|S] g(0) =[S - (S1US>)|
f(1) = |51] g(1l) = |51 — 57
f(2) = |57 g(2) = |52 — 57|

f(12) =[51n Sz ¢(12) = [S1 N S|
By definition f(z) = > ,>;9(y), so by MIT2

n

S—J S

=1

=g =Y uiw = Y (-1

y>0 yEBn

(S

1€Y

III. For the FTDC, use g(m) 1= Sf(m) = X< f(4)
in Cy. So by MIT1 and [4,5] = C;_,

flm) = ) p(E,m)g(i) = g(m) — g(m — 1)

i<m
= Ag(m) = ASf(m).
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The incidence algebra

Consider the incidence algebra of P, I(P), which
consists of all functions f : Int(P) — C. The multi-
plication in this algebra is convolution defined by

frgla,y) = > f(z,2)g9(zy).
rlzy
It will be convenient to extend a f € I(P) to any
pair (z,y) € P x P by letting f(z,y) =0 if x £ y. So

frg(z,y) =) f(z,2)9(z ).

z€P

Let z1,xzo0,...,2, De a fixed linear extension of P
(so P ={z1,...,zn} and x; < z; in P implies i < j).
Define a set of complex matrices Mat(P) with rows
and columns indexed by xz1,...,zn:

Proposition 7 I(P) = M(P) as algebras via the
isomporphism

fellP) < My=(f(z,y)). =

11



For example, B> has linear extension (0,1,2,12 and
1 -1 -1 1

o 1 o0 -1
My = O 0O 1 -1
O 0O 0 1

Corollary 8 1. I(P) has an identity element de-
noted 1 : Int(P) — C given by 1(z,y) = 6z4.

2. feI(P) is invertible iff f(x,x) # 0 for all x € P.
Proof. 1. M, is the identity matrix.

2. My is invertible iff det My # 0. Since Mg IS upper
triangular, det My = [[,cp f(z,z). =

Define ¢ € I(P) by
¢((z,y) =1 Vz,y] €lntP.

Corollary 9 We have (~1 = 4.

Proof. It suffices to show pux( =1 but

(b*O(zy) = > plz,2)C(2,y)

r<zly

= Y uw@2)=1(zy). =

r<zy
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The Mobius algebra

A lattice is a poset L where every z,y € L have a
greatest lower bound or meet, x Ay, and a least
upper bound or joint, x Vy. For example,

Poset TNy xVYy
Cn min{z,y} max{z,y}
Bn TNy rUy

Dy gcd(z,y) lcm(x,y)

Consider the complex vector space of formal sums

M(L) ={> csx : cz € C}.
x€L

So the elements of L are a basis for M(L). For
x € L, define

€x (= Z w(z,x)x

z<x
in M(L). For example in A(B>) where we have
p(z, @) = (~1)l=~=
ep = u(0,0)0 = 0,
€1 — :U'(la 1)1 - /J,(@, 1)® =1- @,
€2 — :U'(27 2)2 - /J,(@, 2)(2) =2 - @,

e10= Y wp(z,12)z=12—-1-2419.
x€ B>
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Lemma 10 a. Ifz € L thenz = ) ..

z<x
b. The set B=1{e; : = € L} is a basis for M(L).

Proof. 1. This follows immediately by applying the
converse of MIT1 to the definition of the e,.

2. Since |B| = |L| we need only prove that the e,
span, which follows from part 1. =

The Mobius algebra is M (L) with multiplication

€x - €y — 533,y€x.
Proposition 11 Ifx,yc€ L thenxz-y=x A y.

Proof. Using Lemma 10.a

[
\dh

M

I\

N

S

[
(]
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Theorem 12 (Wiesner’'s Theorem) Suppose L is
a finite lattice and ce L'\ 1. Then

> wp(z,I)=0.

xAc=0

Proof. Expand c- €7 in two ways
C-€1 — Zed-ei =0
d<c

sinced<c<1sod#1ande; eg =0. Now by the
Proposition

O=c-eg =c- Z,u(x,i)xz Z,u(:c,i):c/\c.
r<1 xeL

Taking the coefficient of 0 on both sides finishes
the proof. =

Theorem 13 (Dual Weisner) Suppose L is a fi-
nite lattice and d € L\ 0. Then

> w0,z)=0.

zVe=1
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The atoms of poset P are
A= A(P)={a€ P : a covers 0}.
The coatoms of poset P are
A*=A*(P)={be P : 1 covers b}.
For example

P A(P) A*(P)
Ch {1} {n—1}
Bn {z : |x|=1} {z : |[z|=n-1}
Dy {p prime : pln} {n/p: p prime}

Theorem 14 (P. Hall) Let L be a finite lattice.
a. If\VA(L) #1 then u(0,1) = 0.
b. If NA*(L) # 0 then p(0,1) = 0.

Proof. a. Let ¢ = \V A(L) in Weisner which is OK
since c %= 1.

> p(z,I)=0.
xAc=0
But zAc =0 implies z = 0. (If £ %2 0 then =z > a
for some a € A(L) sO x Ac > a.) But then the sum
above has only one term corresponding to x = 0
and so reduces to u(0,1) =0. =
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The order complex

A chain C of length [ in Pis(C :zg<zxz1 <...<xj.
Equivalently C £ C;. Let P have a 0 and a 1 # 0.
The order complex is

AP={C : z0>0, ;< 1}

Then AP is a simplicial complex since any subset of
a chain is a chain. (We do not include 0 or 1 in our
chains since if we did AP would be contractible.)
For example

1
1 <12 1 <13
12 13
2 <12 3<13
2 3
2 <23 3<23
23

The simplices of AP of dimension [ are

AP ={C e AP : C has length I}.
Also A~1P = {p} and AP =0 for | < —2.
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Lemma 15 For1>0: (¢—1)40,1) = |Al—2P|.

Proof. From the definitions
1 ifz<y
S (¢-1)X0,1)
= D (¢ —1)(0,20) -+ (¢ — 1) (w2, 1)

0<zp<...<x;_»<1

= )3 !
0<zp<...<xj_o<1

= |A7?P|. =

Proposition 16 (Reduced Euler Characteristic)

w®0,1) = Y (-1)l|Aa'p.
1>-1

Proof. Using the lemma and (¢ —1)(0,1) = 0:
(0, 1) ¢~1(0,1)

[14+ (¢ —1D]70,1)

= Y (-DY¢-1)%0,1)

>0

= Y (-14al=2p|
>0

= Y -1YAa'P. =

I>—1
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