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Let P∗ be the words w = a1a2 . . . an over the positive integers.

Consider the major index and the inversion number

maj w =
∑

ai>ai+1

i and inv w = #{i < j : ai > aj}.

Theorem (MacMahon)
If Sn is the symmetric group on {1, . . . ,n} then∑

w∈Sn

qmaj w =
∑

w∈Sn

qinv w .

A statistic st : Sn → N (nonnegative integers) is Mahonian if it
has the same distribution as maj and inv. Given finite S,T ⊆ P∗,
call (S,T ) a Mahonian pair if∑

w∈S

qmaj w =
∑
w∈T

qinv w .

So MacMahon’s Theorem says (Sn,Sn) is a Mahonian pair.
What about pairs with S 6= T ?
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Foata’s fundamental map is a bijection φ : P∗ → P∗ such that

maj v = invφ(v)

∀v ∈ P∗.

So (S, φ(S)) and (φ−1(T ),T ) are always Mahonian
pairs.
Defining φ: Given v = a1 . . . an, construct a sequence of words
w1, . . . ,wn = φ(v) inductively. Let w1 = a1. Given wi = b1 . . . bi ,
compare bi and ai+1. If bi ≤ ai+1 then factor wi = f1 · · · fk where
each fj has a unique element ≤ ai+1 at its end with all other
elements > ai+1.

Let wi+1 = g1 · · · gkai+1 where gj is fj with a
cyclic shift one place to the right.
Ex. If wi = 9136847552 and ai+1 = 4 then the factorization is

wi = 91 · 3 · 684 · 7552

and so
wi+1 = 19346827554

If bi > ai+1, then obtain wi+1 similarly interchanging ≤ and >.
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A partition is λ = (λ1 ≥ . . . ≥ λm) ∈ P∗.

Write |λ| =
∑

i λi .
The Ferrers diagram of λ has m left-justified rows with λi boxes
in row i . Partition λ fits in an m × n rectangle, λ ⊆ m × n, if
λ ⊆ (nm) as Ferrers diagrams. The Durfee square size of λ,
d = d(λ), is the largest d such that (dd ) ⊆ λ.
A w ∈ {1,2}∗ has lattice path, P(w), starting at (0,0) and
taking unit steps north or east for each 1 or 2 in w , respectively.
If P(w) ends at (n,m) then there is an associated partition,
λ(w) ⊆ m × n, whose Ferrers diagram is NE of P(w).
Ex. w = 112211212 has P(w) at right
λ(w) = (3,2,2) ⊆ 5× 4
|λ| = 3 + 2 + 2 = 7
d(λ) = 2

1
1 2 2

1
12

12

Lemma
If v ∈ {1,2}∗ and λ = λ(φ(v)), then

1. maj v = |λ|, and
2. des v = d(λ) where des v = #{i : ai > ai+1}.
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Let Π(w) ⊆ P∗ denote the set of permutations of w .

A ballot
sequence is w ∈ P∗ such that, for every prefix v of w and i ∈ P,
the number of i ’s in v is ≥ the number of (i + 1)’s. Let

Bn = {w ∈ Π(1n2n) : w is a ballot sequence}.
The i th rank of λ is, for 1 ≤ i ≤ d(λ),

ri(λ) = λi − λ′i
where the prime denotes conjugation.
Ex. If λ = (3,2,2) then

r1(λ) = 3− 3 = 0 and r2(λ) = 2− 3 = −1.

Let
Rn = {λ : λ ⊆ n × n and ri(λ) < 0 for all i}.

Theorem
φ(Bn) = {w ∈ Π(1n2n) : λ(w) ∈ Rn},

and so ∑
v∈Bn

qmaj v tdes v =
∑
λ∈Rn

q|λ|td(λ).
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Extend the definition of a Mahonian pair to infinite sets by
requiring the existence a bijection f : S → T such that
maj v = inv f (v) for all v ∈ S.

Let P stand for the set of all
integer partitions, and let

R>0 = {λ ∈ P : ri > 0 for all i}, P6=1 = {λ ∈ P : λi 6= 1 for all i}.

Theorem (Andrews,Erdős-Richmond)∑
λ∈R>0

q|λ| =
∑
λ∈P6=1

q|λ|.

Corteel-Savage-Venkatraman gave a proof of this theorem
using a bijection CSV : P6=1 → R>0. If S ⊆ P then let

S′ = {λ′ : λ ∈ S}.

We define the map CSV ′ : P ′6=1 → R′>0 by CSV ′(λ′) = µ′ iff
CSV (λ) = µ.
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λ∈R>0

q|λ| =
∑
λ∈P6=1

q|λ|.

Corteel-Savage-Venkatraman gave a proof of this theorem
using a bijection CSV : P6=1 → R>0. If S ⊆ P then let

S′ = {λ′ : λ ∈ S}.

We define the map CSV ′ : P ′6=1 → R′>0 by CSV ′(λ′) = µ′ iff
CSV (λ) = µ.



To state the related Mahonia pair result, we need some
notation.

Every λ ∈ P has an associated word w(λ) gotten by
by encoding the southeast boundary of λ with ones and twos.
Ex. If λ = (3,2,2) then w(λ) = 221121
So we can apply φ and φ−1 to partitions by letting

φ(λ) = φ(w(λ)), φ−1(λ) = φ−1(w(λ)).

For any word v we use the notation

Wv = {1,2}∗v ] {ε}, Bv = {w ∈Wv : w a ballot sequence}.

Theorem
We have the following Mahonian pairs

(W21,P), (B21,R′>0), (W121,P ′6=1)
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A symmetric chain decomposition (SCD) of Bn, the family of all
subsets S ⊆ {1, . . . ,n}:

Let w(S) = a1a2 . . . an ∈ {1,2}∗ where

ai =

{
1 if i 6∈ S,
2 if i ∈ S.

Pair up 1s and 2s in w(S) as left and right parentheses. The
core of S is the set of pairs together with their positions.
Ex. w = 211212221121 has core −112122−−12−.

Theorem (Greene-Kleitman)
There is an SCD of Bn where the elements in a chain are all
subsets with the same core.
Define GK : W121 → B21 by sending v = x121 ∈W121 to

GK (v) = x12t+11

where x is x with all unpaired 2s replaced by 1s, and t is the
number of unpaired 2s.

Theorem (S-Savage)
We have

CSV ′ = φ ◦GK ◦ φ−1.
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1 The birth.

The Lucas polynomials in s, t are defined by
{0} = 0, {1} = 1, and for n ≥ 2: {n} = s{n− 1}+ t{n− 2}. For
0 ≤ k ≤ n, the corresponding lucanomial coefficient is{n

k

}
=

{n}!
{k}!{n − k}!

where {n}! = {1}{2} · · · {n}. Special cases include fibonomials
(s = t = 1) and q-binomials (s = [2], t = −q). Lucanomials are
polynomials in s, t with coefficients in N. Savage and S were
the first to give a simple combinatorial interpretation for them.

Question (Lou Shapiro)
Is

C{n}
def
=

1
{n + 1}

{
2n
n

}
∈ N[s, t ]?

If so, is there a combinatorial interpretation?
Ekhad has pointed out the the answer to the first question is
“yes” but we have no answer for the second. Working on this
problem lead us to the ballot theorem.
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2 Next steps. (a)

Our preprint contains about a dozen
Mahonian pairs related to Catalan and Fibonacci numbers, the
Rogers-Ramanujan identities, and other combinatorial objects.
But all are in {1,2}∗ and all use φ.

Problem
Find Mahonian pairs using larger alphabets or other maps.
There is another bijection ψ : Sn → Sn with maj v = invψ(v):
Let vi be the subpermutation of v on 1, . . . , i . Define
w1, . . . ,wn = ψ(w) by w1 = v1 = 1, and for i ≥ 2 obtain wi+1
from wi by inserting i + 1 in the unique space of wi such that

inv wi+1 − inv wi = maj vi+1 −maj vi .

(b) The excedance number of w = a1 . . . an ∈ Sn is

exc w = #{i : ai > i}

and this can be generalized to P∗. The statistics des and exc are
equidistributed on Sn and any statistic with the same
distribution is called Eulerian. Savage and S are now studying
Eulerian pairs (defined in the obvious way).
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