Maximal Independent Sets In Graphs With At Most r Cycles

Bruce E. Sagan
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027
sagan@math.msu.edu
www.math.msu.edu/~sagan
and

Vincent R. Vatter
Department of Mathematics
Rutgers University
110 Frelinghuysen Rd
Piscataway, NJ 08854-8019
vatter@math.rutgers.edu

- 1. Introduction
- 2. Previous Results
- 3. The Main Theorem

1. Introduction

Let G = (V, E) be a simple graph. A subset $I \subseteq V$ is independent if there are no edges between any two elements of I. Also, I is maximal if it is contained in no larger independent set. We let

m(G) = number of maximal independent sets in G.

Ex. The path P_3

$$P_3 = v$$

has independent sets

$$I_1 = \{u, w\}, \quad I_2 = \{v\}$$

so $m(P_3) = 2$.

Given a family \mathcal{F} of graphs with |V|=n, we ask two questions

- 1. What is $\max_{G \in \mathcal{F}} m(G)$?
- 2. What are the extremal graphs?

1a. History

Given a family \mathcal{F} of graphs with |V|=n, we ask two questions

- 1. What is $\max_{G \in \mathcal{F}} m(G)$?
- 2. What are the extremal graphs?

Erdös and Moser possed the original question for all graphs with n vertices in the early 1960s. (Actually, they posed it in terms of maximal cliques.) Below is a history of the questions that have been addressed concerning graphs with a bounded number of cycles.

${\cal F}$	Who	When	Extremal?
all graphs	Erdös	~1960	Y
all graphs	Moon and Moser	1965	Y
connected	Füredi	1987	Ν
connected	Griggs, Grinstead,		
	and Guichard	1988	Y
trees	Wilf	1986	Ν
trees	Sagan	1988	Y
\leq 1 cycle	Jou and Chang	1997	Y
\leq 2,3 cycles	Goh and Koh	2001	Y
$\leq r$ cycles	Sagan and Vatter	2001	Y

2. Previous Results

Let tG stand for the disjoint union of t copies of G. Define

$$G(n) := \begin{cases} \frac{n}{3}K_3 & \text{if } n \equiv 0 \text{ (mod 3),} \\ 2K_2 \uplus \frac{n-4}{3}K_3 & \text{if } n \equiv 1 \text{ (mod 3),} \\ K_2 \uplus \frac{n-2}{3}K_3 & \text{if } n \equiv 2 \text{ (mod 3).} \end{cases}$$

Also let

$$G'(n) := K_4 \uplus \frac{n-4}{3} K_3 \text{ if } n \equiv 1 \pmod{3}.$$

Since $m(G \uplus H) = m(G)m(H)$, we see that

$$g(n) := m(G(n)) = \begin{cases} 3^{\frac{n}{3}} & \text{if } n \equiv 0 \pmod{3}, \\ 4 \cdot 3^{\frac{n-4}{3}} & \text{if } n \equiv 1 \pmod{3}, \\ 2 \cdot 3^{\frac{n-2}{3}} & \text{if } n \equiv 2 \pmod{3}. \end{cases}$$

Note that m(G'(n)) = m(G(n)).

Theorem 1 (Moon and Moser) Let G be a graph with $n \ge 2$ vertices. Then

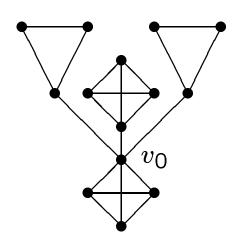
$$m(G) \le g(n)$$

with equality if and only if G = G(n) or G'(n).

Construct a graph $K_m * G$ by picking a vertex v_0 in K_m and connecting it to a single vertex in each component of G. If $n \geq 6$ then let

$$C(n) := \begin{cases} K_3 * \frac{n-3}{3} K_3 & \text{if } n \equiv 0 \pmod{3}, \\ K_4 * \frac{n-4}{3} K_3 & \text{if } n \equiv 1 \pmod{3}, \\ K_4 * \left(K_4 \uplus \frac{n-8}{3} K_3 \right) & \text{if } n \equiv 2 \pmod{3}. \end{cases}$$

The graph C(14) is



Letting c(n) := m(C(n)) we have

$$c(n) = \begin{cases} 2 \cdot 3^{\frac{n-3}{3}} + 2^{\frac{n-3}{3}} & \text{if } n \equiv 0 \text{ (mod 3),} \\ 3^{\frac{n-1}{3}} + 2^{\frac{n-4}{3}} & \text{if } n \equiv 1 \text{ (mod 3),} \\ 4 \cdot 3^{\frac{n-5}{3}} + 3 \cdot 2^{\frac{n-8}{3}} & \text{if } n \equiv 2 \text{ (mod 3).} \end{cases}$$

Theorem 2 (Griggs, Grinstead, and Guichard) Let G be a connected graph with $n \geq 6$ vertices. Then

$$m(G) \le c(n)$$

with equality if and only if G = C(n).

The Main Theorem

Now suppose that $n \geq 3r - 1$. Define

$$G(n,r) := \begin{cases} rK_3 \uplus \frac{n-3r}{2}K_2 & \text{if } n \equiv r \pmod{2}, \\ (r-1)K_3 \uplus \frac{n-3r+3}{2}K_2 & \text{if } n \not\equiv r \pmod{2}. \end{cases}$$

Further, let g(n,r) := m(G(n,r)) and so

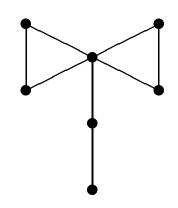
$$g(n,r) = \begin{cases} 3^r \cdot 2^{\frac{n-3r}{2}} & \text{if } n \equiv r \pmod{2}, \\ 3^{r-1} \cdot 2^{\frac{n-3r+3}{2}} & \text{if } n \not\equiv r \pmod{2}. \end{cases}$$

Now assume $n \geq 3r$ and define

$$C(n,r) := \left\{ \begin{array}{ll} K_3 * \left((r-1)K_3 \uplus \frac{n-3r}{2}K_2 \right) & \text{if } n \equiv r \pmod{2}, \\ K_1 * \left(rK_3 \uplus \frac{n-3r-1}{2}K_2 \right) & \text{if } n \not\equiv r \pmod{2}. \end{array} \right.$$

As usual, we let c(n,r) := m(C(n,r)) and compute

$$c(n,r) = \begin{cases} 3^{r-1} \cdot 2^{\frac{n-3r+2}{2}} + 2^{r-1} & \text{if } n \equiv r \pmod{2}, \\ 3^r \cdot 2^{\frac{n-3r-1}{2}} & \text{if } n \not\equiv r \pmod{2}. \end{cases}$$



Define E to be the graph

Theorem 3 (Sagan and Vatter) Let G be a graph with n vertices and at most r cycles where $r \ge 1$.

(I) If $n \geq 3r - 1$ then for all such graphs we have

$$m(G) \leq g(n,r)$$

with equality if and only if $G \cong G(n,r)$.

(II) If $n \geq 3r$ then for all such graphs which are connected we have

$$m(G) \le c(n,r)$$

with equality if and only if $G \cong C(n,r)$ or if G is one of the following exceptional cases

n	r	possible $G \not\cong C(n,r)$
4	1	P_{4}
5	1 1 2	C_{5}
7	2	C(7,1), E

Proof (sketch) Consider the case of all graphs with n vertices and at most r cycles, $n \geq 3r - 1$. Double induct on r and n, where the cases $r \leq 3$ have been done previously. If n = 3r - 1 or 3r then

$$g(n,r) = g(n)$$
 and $G(n,r) = G(n)$

so we are done by Moon-Moser.

One can show that if G has two or more intersecting cycles then m(G) < g(n,r), so it suffices to look at graphs all of whose blocks are K_2 or cycles. Let B be an endblock of G. We have three cases depending on whether $B \cong K_2$, K_3 , or C_p for $p \geq 4$.

Let's do $B \cong K_2$. For any complete endblock B

$$m(G) = \sum_{v \in V(B)} m(G - N[v])$$

where N[v] is the closed neighborhood of v. Also, g(n,r) is monotonically inceasing in n. Now supposing $V(B) = \{v,w\}$, then both G-N[v] and G-N[w] have at most n-2 vertices and at most r cycles. By induction and the above facts

$$m(G) \le 2g(n-2,r) = g(n,r)$$

with equality iff $G - N[v] = G - N[w] \cong G(n-2,r)$. It follows that B is actually a component of G isomorphic to K_2 and so $G \cong G(n,r)$.