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Given i , j ∈ Z, let

gcd(i , j) = the greatest common divisor of i and j.

We say that i and j are relatively prime if gcd(i , j) = 1. The
Euler phi-function is

φ(n) = #{i : 1 ≤ i ≤ n and gcd(i , n) = 1}.

Example. φ(10) = #{1, 3, 7, 9} = 4.
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Theorem (H. J. S. Smith, 1876)
Let M be the n × n matrix with Mi,j = gcd(i , j).

Then

det M = φ(1)φ(2) · · ·φ(n).

Example. If n = 3 then

M =

1 2 3
1
2
3

 1 1 1
1 2 1
1 1 3


det M = 1 ·2 ·3+1 ·1 ·1+1 ·1 ·1−1 ·1 ·1−1 ·1 ·3−1 ·2 ·1 = 2.

On the other hand φ(1)φ(2)φ(3) = 1 · 1 · 2 = 2.
Many authors have extended Smith’s Theorem:

Apostol,Beslin-Ligh, Bhat, Daniloff, Haukkanen, Haukkanen-
Wang-Silanpää, Jager, Li, Linström, D. A. Smith, Wilf.

We will prove a theorem which will have all these other results
as special cases. Furthermore, this theorem is trivial to prove.
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Recall that if P is a poset and α ∈ I(P) then there is an
associated matrix Mα where Mα

x ,y = α(x , y).

If the rows and
columns of Mα are indexed by a linear extension L of P, then
Mα is upper triangular. The following is our main theorem.

Theorem (Altinisik-S-Tuglu)
Let P be a poset and L be a linear extension of P. Suppose
α, β ∈ I(P) and M has rows and columns indexed by L where

Mx ,y =
∑
z∈P

α(z, x)β(z, y).

Then
det M =

∏
z∈P

α(z, z)β(z, z).

Proof. Let t denote transposition. Then

Mx ,y =
∑

z

Mα
z,xMβ

z,y =
∑

z

(Mα)t
x ,zMβ

z,y

So M = (Mα)tMβ, implying det M = det Mα det Mβ. By
triangularity of Mα, Mβ we have det M =

∏
z α(z, z)β(z, z).
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In the Main Theorem, the entries of M are sums,

Mx ,y =
∑
z∈P

α(z, x)β(z, y).

while the factors of det M are individual terms.

In Smith’s
Theorem, the entries of M are individual terms, while the
factors of det M are sums: if we let
S = {i : 1 ≤ i ≤ n and gcd(i , n) = 1} then we have

φ(n) = #S =
∑
i∈S

1.

To switch the role of sum and individual term we need Möbius
inversion. The sums in the Main Theorem have two implicit
restrictions: α(z, x), β(z, y) 6= 0 implies z ≤ x and z ≤ y . To
use Möbius inversion we need a single restriction z ≤ w . To
collapse the two restrictions to one, we specialize to the case of
a meet semi-lattice.
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use Möbius inversion we need a single restriction z ≤ w . To
collapse the two restrictions to one, we specialize to the case of
a meet semi-lattice.



In the Main Theorem, the entries of M are sums,

Mx ,y =
∑
z∈P

α(z, x)β(z, y).

while the factors of det M are individual terms. In Smith’s
Theorem, the entries of M are individual terms, while the
factors of det M are sums: if we let
S = {i : 1 ≤ i ≤ n and gcd(i , n) = 1} then we have

φ(n) = #S =
∑
i∈S

1.

To switch the role of sum and individual term we need Möbius
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A meet (respectively, join) semi-lattice is a poset P where every
x , y ∈ P have a meet (respectively, join).

Proposition

(a) A finite meet semi-lattice having a 1̂ is a lattice.

(b) A finite join semi-lattice having a 0̂ is a lattice.

Proof of (a). Every x , y ∈ P have a meet, so every nonempty
Q ⊆ P has a meet. (Induct on |Q| which must be finite.) We
need to prove that any x , y ∈ P have a join. Let

Q = {z : z ≥ x and z ≥ y}.

Then Q 6= ∅ because 1̂ ∈ Q. So ∧Q exists and is the join:
1. We have z ≥ x for all z ∈ Q so ∧Q ≥ x . Similarly ∧Q ≥ y .
2. If z ≥ x and z ≥ y then z ∈ Q. So z ≥ ∧Q.

Example. Πn is a lattice: Πn is finite and has a 1̂. Also, any
π = B1/ . . . /Bk and σ = C1/ . . . /Cl have a meet, namely the
partition whose blocks are the nonempty Bi ∩ Cj for 1 ≤ i ≤ k
and 1 ≤ j ≤ l . By the proposition, Πn is a lattice.



A meet (respectively, join) semi-lattice is a poset P where every
x , y ∈ P have a meet (respectively, join).

Proposition

(a) A finite meet semi-lattice having a 1̂ is a lattice.

(b) A finite join semi-lattice having a 0̂ is a lattice.

Proof of (a). Every x , y ∈ P have a meet, so every nonempty
Q ⊆ P has a meet. (Induct on |Q| which must be finite.) We
need to prove that any x , y ∈ P have a join. Let

Q = {z : z ≥ x and z ≥ y}.

Then Q 6= ∅ because 1̂ ∈ Q. So ∧Q exists and is the join:
1. We have z ≥ x for all z ∈ Q so ∧Q ≥ x . Similarly ∧Q ≥ y .
2. If z ≥ x and z ≥ y then z ∈ Q. So z ≥ ∧Q.

Example. Πn is a lattice: Πn is finite and has a 1̂. Also, any
π = B1/ . . . /Bk and σ = C1/ . . . /Cl have a meet, namely the
partition whose blocks are the nonempty Bi ∩ Cj for 1 ≤ i ≤ k
and 1 ≤ j ≤ l . By the proposition, Πn is a lattice.



A meet (respectively, join) semi-lattice is a poset P where every
x , y ∈ P have a meet (respectively, join).

Proposition

(a) A finite meet semi-lattice having a 1̂ is a lattice.

(b) A finite join semi-lattice having a 0̂ is a lattice.

Proof of (a). Every x , y ∈ P have a meet, so every nonempty
Q ⊆ P has a meet. (Induct on |Q| which must be finite.) We
need to prove that any x , y ∈ P have a join. Let

Q = {z : z ≥ x and z ≥ y}.

Then Q 6= ∅ because 1̂ ∈ Q. So ∧Q exists and is the join:
1. We have z ≥ x for all z ∈ Q so ∧Q ≥ x . Similarly ∧Q ≥ y .
2. If z ≥ x and z ≥ y then z ∈ Q. So z ≥ ∧Q.

Example. Πn is a lattice: Πn is finite and has a 1̂. Also, any
π = B1/ . . . /Bk and σ = C1/ . . . /Cl have a meet, namely the
partition whose blocks are the nonempty Bi ∩ Cj for 1 ≤ i ≤ k
and 1 ≤ j ≤ l . By the proposition, Πn is a lattice.



A meet (respectively, join) semi-lattice is a poset P where every
x , y ∈ P have a meet (respectively, join).

Proposition

(a) A finite meet semi-lattice having a 1̂ is a lattice.

(b) A finite join semi-lattice having a 0̂ is a lattice.

Proof of (a).

Every x , y ∈ P have a meet, so every nonempty
Q ⊆ P has a meet. (Induct on |Q| which must be finite.) We
need to prove that any x , y ∈ P have a join. Let

Q = {z : z ≥ x and z ≥ y}.

Then Q 6= ∅ because 1̂ ∈ Q. So ∧Q exists and is the join:
1. We have z ≥ x for all z ∈ Q so ∧Q ≥ x . Similarly ∧Q ≥ y .
2. If z ≥ x and z ≥ y then z ∈ Q. So z ≥ ∧Q.

Example. Πn is a lattice: Πn is finite and has a 1̂. Also, any
π = B1/ . . . /Bk and σ = C1/ . . . /Cl have a meet, namely the
partition whose blocks are the nonempty Bi ∩ Cj for 1 ≤ i ≤ k
and 1 ≤ j ≤ l . By the proposition, Πn is a lattice.



A meet (respectively, join) semi-lattice is a poset P where every
x , y ∈ P have a meet (respectively, join).

Proposition

(a) A finite meet semi-lattice having a 1̂ is a lattice.

(b) A finite join semi-lattice having a 0̂ is a lattice.

Proof of (a). Every x , y ∈ P have a meet, so every nonempty
Q ⊆ P has a meet. (Induct on |Q| which must be finite.)

We
need to prove that any x , y ∈ P have a join. Let

Q = {z : z ≥ x and z ≥ y}.

Then Q 6= ∅ because 1̂ ∈ Q. So ∧Q exists and is the join:
1. We have z ≥ x for all z ∈ Q so ∧Q ≥ x . Similarly ∧Q ≥ y .
2. If z ≥ x and z ≥ y then z ∈ Q. So z ≥ ∧Q.

Example. Πn is a lattice: Πn is finite and has a 1̂. Also, any
π = B1/ . . . /Bk and σ = C1/ . . . /Cl have a meet, namely the
partition whose blocks are the nonempty Bi ∩ Cj for 1 ≤ i ≤ k
and 1 ≤ j ≤ l . By the proposition, Πn is a lattice.



A meet (respectively, join) semi-lattice is a poset P where every
x , y ∈ P have a meet (respectively, join).

Proposition

(a) A finite meet semi-lattice having a 1̂ is a lattice.

(b) A finite join semi-lattice having a 0̂ is a lattice.

Proof of (a). Every x , y ∈ P have a meet, so every nonempty
Q ⊆ P has a meet. (Induct on |Q| which must be finite.) We
need to prove that any x , y ∈ P have a join. Let

Q = {z : z ≥ x and z ≥ y}.

Then Q 6= ∅ because 1̂ ∈ Q. So ∧Q exists and is the join:
1. We have z ≥ x for all z ∈ Q so ∧Q ≥ x . Similarly ∧Q ≥ y .
2. If z ≥ x and z ≥ y then z ∈ Q. So z ≥ ∧Q.

Example. Πn is a lattice: Πn is finite and has a 1̂. Also, any
π = B1/ . . . /Bk and σ = C1/ . . . /Cl have a meet, namely the
partition whose blocks are the nonempty Bi ∩ Cj for 1 ≤ i ≤ k
and 1 ≤ j ≤ l . By the proposition, Πn is a lattice.



A meet (respectively, join) semi-lattice is a poset P where every
x , y ∈ P have a meet (respectively, join).

Proposition

(a) A finite meet semi-lattice having a 1̂ is a lattice.

(b) A finite join semi-lattice having a 0̂ is a lattice.

Proof of (a). Every x , y ∈ P have a meet, so every nonempty
Q ⊆ P has a meet. (Induct on |Q| which must be finite.) We
need to prove that any x , y ∈ P have a join. Let

Q = {z : z ≥ x and z ≥ y}.

Then Q 6= ∅ because 1̂ ∈ Q.

So ∧Q exists and is the join:
1. We have z ≥ x for all z ∈ Q so ∧Q ≥ x . Similarly ∧Q ≥ y .
2. If z ≥ x and z ≥ y then z ∈ Q. So z ≥ ∧Q.

Example. Πn is a lattice: Πn is finite and has a 1̂. Also, any
π = B1/ . . . /Bk and σ = C1/ . . . /Cl have a meet, namely the
partition whose blocks are the nonempty Bi ∩ Cj for 1 ≤ i ≤ k
and 1 ≤ j ≤ l . By the proposition, Πn is a lattice.



A meet (respectively, join) semi-lattice is a poset P where every
x , y ∈ P have a meet (respectively, join).

Proposition

(a) A finite meet semi-lattice having a 1̂ is a lattice.

(b) A finite join semi-lattice having a 0̂ is a lattice.

Proof of (a). Every x , y ∈ P have a meet, so every nonempty
Q ⊆ P has a meet. (Induct on |Q| which must be finite.) We
need to prove that any x , y ∈ P have a join. Let

Q = {z : z ≥ x and z ≥ y}.

Then Q 6= ∅ because 1̂ ∈ Q. So ∧Q exists and is the join:

1. We have z ≥ x for all z ∈ Q so ∧Q ≥ x . Similarly ∧Q ≥ y .
2. If z ≥ x and z ≥ y then z ∈ Q. So z ≥ ∧Q.

Example. Πn is a lattice: Πn is finite and has a 1̂. Also, any
π = B1/ . . . /Bk and σ = C1/ . . . /Cl have a meet, namely the
partition whose blocks are the nonempty Bi ∩ Cj for 1 ≤ i ≤ k
and 1 ≤ j ≤ l . By the proposition, Πn is a lattice.



A meet (respectively, join) semi-lattice is a poset P where every
x , y ∈ P have a meet (respectively, join).

Proposition

(a) A finite meet semi-lattice having a 1̂ is a lattice.

(b) A finite join semi-lattice having a 0̂ is a lattice.

Proof of (a). Every x , y ∈ P have a meet, so every nonempty
Q ⊆ P has a meet. (Induct on |Q| which must be finite.) We
need to prove that any x , y ∈ P have a join. Let

Q = {z : z ≥ x and z ≥ y}.

Then Q 6= ∅ because 1̂ ∈ Q. So ∧Q exists and is the join:
1. We have z ≥ x for all z ∈ Q so ∧Q ≥ x .

Similarly ∧Q ≥ y .
2. If z ≥ x and z ≥ y then z ∈ Q. So z ≥ ∧Q.

Example. Πn is a lattice: Πn is finite and has a 1̂. Also, any
π = B1/ . . . /Bk and σ = C1/ . . . /Cl have a meet, namely the
partition whose blocks are the nonempty Bi ∩ Cj for 1 ≤ i ≤ k
and 1 ≤ j ≤ l . By the proposition, Πn is a lattice.



A meet (respectively, join) semi-lattice is a poset P where every
x , y ∈ P have a meet (respectively, join).

Proposition

(a) A finite meet semi-lattice having a 1̂ is a lattice.

(b) A finite join semi-lattice having a 0̂ is a lattice.

Proof of (a). Every x , y ∈ P have a meet, so every nonempty
Q ⊆ P has a meet. (Induct on |Q| which must be finite.) We
need to prove that any x , y ∈ P have a join. Let

Q = {z : z ≥ x and z ≥ y}.

Then Q 6= ∅ because 1̂ ∈ Q. So ∧Q exists and is the join:
1. We have z ≥ x for all z ∈ Q so ∧Q ≥ x . Similarly ∧Q ≥ y .

2. If z ≥ x and z ≥ y then z ∈ Q. So z ≥ ∧Q.
Example. Πn is a lattice: Πn is finite and has a 1̂. Also, any
π = B1/ . . . /Bk and σ = C1/ . . . /Cl have a meet, namely the
partition whose blocks are the nonempty Bi ∩ Cj for 1 ≤ i ≤ k
and 1 ≤ j ≤ l . By the proposition, Πn is a lattice.



A meet (respectively, join) semi-lattice is a poset P where every
x , y ∈ P have a meet (respectively, join).

Proposition

(a) A finite meet semi-lattice having a 1̂ is a lattice.

(b) A finite join semi-lattice having a 0̂ is a lattice.

Proof of (a). Every x , y ∈ P have a meet, so every nonempty
Q ⊆ P has a meet. (Induct on |Q| which must be finite.) We
need to prove that any x , y ∈ P have a join. Let

Q = {z : z ≥ x and z ≥ y}.

Then Q 6= ∅ because 1̂ ∈ Q. So ∧Q exists and is the join:
1. We have z ≥ x for all z ∈ Q so ∧Q ≥ x . Similarly ∧Q ≥ y .
2. If z ≥ x and z ≥ y

then z ∈ Q. So z ≥ ∧Q.
Example. Πn is a lattice: Πn is finite and has a 1̂. Also, any
π = B1/ . . . /Bk and σ = C1/ . . . /Cl have a meet, namely the
partition whose blocks are the nonempty Bi ∩ Cj for 1 ≤ i ≤ k
and 1 ≤ j ≤ l . By the proposition, Πn is a lattice.



A meet (respectively, join) semi-lattice is a poset P where every
x , y ∈ P have a meet (respectively, join).

Proposition

(a) A finite meet semi-lattice having a 1̂ is a lattice.

(b) A finite join semi-lattice having a 0̂ is a lattice.

Proof of (a). Every x , y ∈ P have a meet, so every nonempty
Q ⊆ P has a meet. (Induct on |Q| which must be finite.) We
need to prove that any x , y ∈ P have a join. Let

Q = {z : z ≥ x and z ≥ y}.

Then Q 6= ∅ because 1̂ ∈ Q. So ∧Q exists and is the join:
1. We have z ≥ x for all z ∈ Q so ∧Q ≥ x . Similarly ∧Q ≥ y .
2. If z ≥ x and z ≥ y then z ∈ Q.

So z ≥ ∧Q.
Example. Πn is a lattice: Πn is finite and has a 1̂. Also, any
π = B1/ . . . /Bk and σ = C1/ . . . /Cl have a meet, namely the
partition whose blocks are the nonempty Bi ∩ Cj for 1 ≤ i ≤ k
and 1 ≤ j ≤ l . By the proposition, Πn is a lattice.



A meet (respectively, join) semi-lattice is a poset P where every
x , y ∈ P have a meet (respectively, join).

Proposition

(a) A finite meet semi-lattice having a 1̂ is a lattice.

(b) A finite join semi-lattice having a 0̂ is a lattice.

Proof of (a). Every x , y ∈ P have a meet, so every nonempty
Q ⊆ P has a meet. (Induct on |Q| which must be finite.) We
need to prove that any x , y ∈ P have a join. Let

Q = {z : z ≥ x and z ≥ y}.

Then Q 6= ∅ because 1̂ ∈ Q. So ∧Q exists and is the join:
1. We have z ≥ x for all z ∈ Q so ∧Q ≥ x . Similarly ∧Q ≥ y .
2. If z ≥ x and z ≥ y then z ∈ Q. So z ≥ ∧Q.

Example. Πn is a lattice: Πn is finite and has a 1̂. Also, any
π = B1/ . . . /Bk and σ = C1/ . . . /Cl have a meet, namely the
partition whose blocks are the nonempty Bi ∩ Cj for 1 ≤ i ≤ k
and 1 ≤ j ≤ l . By the proposition, Πn is a lattice.



A meet (respectively, join) semi-lattice is a poset P where every
x , y ∈ P have a meet (respectively, join).

Proposition

(a) A finite meet semi-lattice having a 1̂ is a lattice.

(b) A finite join semi-lattice having a 0̂ is a lattice.

Proof of (a). Every x , y ∈ P have a meet, so every nonempty
Q ⊆ P has a meet. (Induct on |Q| which must be finite.) We
need to prove that any x , y ∈ P have a join. Let

Q = {z : z ≥ x and z ≥ y}.

Then Q 6= ∅ because 1̂ ∈ Q. So ∧Q exists and is the join:
1. We have z ≥ x for all z ∈ Q so ∧Q ≥ x . Similarly ∧Q ≥ y .
2. If z ≥ x and z ≥ y then z ∈ Q. So z ≥ ∧Q.

Example. Πn is a lattice:

Πn is finite and has a 1̂. Also, any
π = B1/ . . . /Bk and σ = C1/ . . . /Cl have a meet, namely the
partition whose blocks are the nonempty Bi ∩ Cj for 1 ≤ i ≤ k
and 1 ≤ j ≤ l . By the proposition, Πn is a lattice.



A meet (respectively, join) semi-lattice is a poset P where every
x , y ∈ P have a meet (respectively, join).

Proposition

(a) A finite meet semi-lattice having a 1̂ is a lattice.

(b) A finite join semi-lattice having a 0̂ is a lattice.

Proof of (a). Every x , y ∈ P have a meet, so every nonempty
Q ⊆ P has a meet. (Induct on |Q| which must be finite.) We
need to prove that any x , y ∈ P have a join. Let

Q = {z : z ≥ x and z ≥ y}.

Then Q 6= ∅ because 1̂ ∈ Q. So ∧Q exists and is the join:
1. We have z ≥ x for all z ∈ Q so ∧Q ≥ x . Similarly ∧Q ≥ y .
2. If z ≥ x and z ≥ y then z ∈ Q. So z ≥ ∧Q.

Example. Πn is a lattice: Πn is finite and has a 1̂.

Also, any
π = B1/ . . . /Bk and σ = C1/ . . . /Cl have a meet, namely the
partition whose blocks are the nonempty Bi ∩ Cj for 1 ≤ i ≤ k
and 1 ≤ j ≤ l . By the proposition, Πn is a lattice.



A meet (respectively, join) semi-lattice is a poset P where every
x , y ∈ P have a meet (respectively, join).

Proposition

(a) A finite meet semi-lattice having a 1̂ is a lattice.

(b) A finite join semi-lattice having a 0̂ is a lattice.

Proof of (a). Every x , y ∈ P have a meet, so every nonempty
Q ⊆ P has a meet. (Induct on |Q| which must be finite.) We
need to prove that any x , y ∈ P have a join. Let

Q = {z : z ≥ x and z ≥ y}.

Then Q 6= ∅ because 1̂ ∈ Q. So ∧Q exists and is the join:
1. We have z ≥ x for all z ∈ Q so ∧Q ≥ x . Similarly ∧Q ≥ y .
2. If z ≥ x and z ≥ y then z ∈ Q. So z ≥ ∧Q.

Example. Πn is a lattice: Πn is finite and has a 1̂. Also, any
π = B1/ . . . /Bk and σ = C1/ . . . /Cl have a meet,

namely the
partition whose blocks are the nonempty Bi ∩ Cj for 1 ≤ i ≤ k
and 1 ≤ j ≤ l . By the proposition, Πn is a lattice.



A meet (respectively, join) semi-lattice is a poset P where every
x , y ∈ P have a meet (respectively, join).

Proposition

(a) A finite meet semi-lattice having a 1̂ is a lattice.

(b) A finite join semi-lattice having a 0̂ is a lattice.

Proof of (a). Every x , y ∈ P have a meet, so every nonempty
Q ⊆ P has a meet. (Induct on |Q| which must be finite.) We
need to prove that any x , y ∈ P have a join. Let

Q = {z : z ≥ x and z ≥ y}.

Then Q 6= ∅ because 1̂ ∈ Q. So ∧Q exists and is the join:
1. We have z ≥ x for all z ∈ Q so ∧Q ≥ x . Similarly ∧Q ≥ y .
2. If z ≥ x and z ≥ y then z ∈ Q. So z ≥ ∧Q.

Example. Πn is a lattice: Πn is finite and has a 1̂. Also, any
π = B1/ . . . /Bk and σ = C1/ . . . /Cl have a meet, namely the
partition whose blocks are the nonempty Bi ∩ Cj for 1 ≤ i ≤ k
and 1 ≤ j ≤ l .

By the proposition, Πn is a lattice.



A meet (respectively, join) semi-lattice is a poset P where every
x , y ∈ P have a meet (respectively, join).

Proposition

(a) A finite meet semi-lattice having a 1̂ is a lattice.

(b) A finite join semi-lattice having a 0̂ is a lattice.

Proof of (a). Every x , y ∈ P have a meet, so every nonempty
Q ⊆ P has a meet. (Induct on |Q| which must be finite.) We
need to prove that any x , y ∈ P have a join. Let

Q = {z : z ≥ x and z ≥ y}.

Then Q 6= ∅ because 1̂ ∈ Q. So ∧Q exists and is the join:
1. We have z ≥ x for all z ∈ Q so ∧Q ≥ x . Similarly ∧Q ≥ y .
2. If z ≥ x and z ≥ y then z ∈ Q. So z ≥ ∧Q.

Example. Πn is a lattice: Πn is finite and has a 1̂. Also, any
π = B1/ . . . /Bk and σ = C1/ . . . /Cl have a meet, namely the
partition whose blocks are the nonempty Bi ∩ Cj for 1 ≤ i ≤ k
and 1 ≤ j ≤ l . By the proposition, Πn is a lattice.



Let P be a meet semi-lattice.

So

Mx ,y =
∑

z≤x , z≤y

α(z, x)β(z, y) =
∑

z≤x∧y

α(z, x)β(z, y).

Let g : P → R be arbitrary. Substituting α(z, x) = g(z) and
β(z, y) = ζ(z, y) into the Main Theorem, we obtain

Mx ,y =
∑

z≤x∧y

g(z) and det M =
∏
z∈P

α(z, z)β(z, z) =
∏
z∈P

g(z).

Define f : P → R by f (z) =
∑

w≤z g(w) so

Mx ,y = f (x ∧ y) and det M =
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A
qy
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qz
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y
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Theorem
For all n ≥ 1:

n =
∑
d |n

φ(d).

Proof. Consider the set S = {1/n, 2/n, . . . , n/n} where the
fractions have been reduced to lowest terms.

For d |n, let
Sd ⊆ S be the fractions with denominator d . Then |Sd | = φ(d)
since c/d ∈ Sd iff 1 ≤ c ≤ d and gcd(c, d) = 1. Also
S = ]d |nSd so

n = |S| =
∑
d |n

|Sd | =
∑
d |n

φ(d).

Example. If n = 6 then

S =

{
1
6
,

2
6
,

3
6
,

4
6
,

5
6
,

6
6

}
=

{
1
6
,

1
3
,

1
2
,

2
3
,

5
6
,

1
1

}
.

S1 =

{
1
1

}
, S2 =

{
1
2

}
, S3 =

{
1
3
,

2
3

}
, S6 =

{
1
6
,

5
6

}
.



Theorem
For all n ≥ 1:

n =
∑
d |n

φ(d).

Proof. Consider the set S = {1/n, 2/n, . . . , n/n} where the
fractions have been reduced to lowest terms.

For d |n, let
Sd ⊆ S be the fractions with denominator d . Then |Sd | = φ(d)
since c/d ∈ Sd iff 1 ≤ c ≤ d and gcd(c, d) = 1. Also
S = ]d |nSd so

n = |S| =
∑
d |n

|Sd | =
∑
d |n

φ(d).

Example. If n = 6 then

S =

{
1
6
,

2
6
,

3
6
,

4
6
,

5
6
,

6
6

}

=

{
1
6
,

1
3
,

1
2
,

2
3
,

5
6
,

1
1

}
.

S1 =

{
1
1

}
, S2 =

{
1
2

}
, S3 =

{
1
3
,

2
3

}
, S6 =

{
1
6
,

5
6

}
.



Theorem
For all n ≥ 1:

n =
∑
d |n

φ(d).

Proof. Consider the set S = {1/n, 2/n, . . . , n/n} where the
fractions have been reduced to lowest terms.

For d |n, let
Sd ⊆ S be the fractions with denominator d . Then |Sd | = φ(d)
since c/d ∈ Sd iff 1 ≤ c ≤ d and gcd(c, d) = 1. Also
S = ]d |nSd so

n = |S| =
∑
d |n

|Sd | =
∑
d |n

φ(d).

Example. If n = 6 then

S =

{
1
6
,

2
6
,

3
6
,

4
6
,

5
6
,

6
6

}
=

{
1
6
,

1
3
,

1
2
,

2
3
,

5
6
,

1
1

}
.

S1 =

{
1
1

}
, S2 =

{
1
2

}
, S3 =

{
1
3
,

2
3

}
, S6 =

{
1
6
,

5
6

}
.



Theorem
For all n ≥ 1:

n =
∑
d |n

φ(d).

Proof. Consider the set S = {1/n, 2/n, . . . , n/n} where the
fractions have been reduced to lowest terms. For d |n, let
Sd ⊆ S be the fractions with denominator d .

Then |Sd | = φ(d)
since c/d ∈ Sd iff 1 ≤ c ≤ d and gcd(c, d) = 1. Also
S = ]d |nSd so

n = |S| =
∑
d |n

|Sd | =
∑
d |n

φ(d).

Example. If n = 6 then

S =

{
1
6
,

2
6
,

3
6
,

4
6
,

5
6
,

6
6

}
=

{
1
6
,

1
3
,

1
2
,

2
3
,

5
6
,

1
1

}
.

S1 =

{
1
1

}
, S2 =

{
1
2

}
, S3 =

{
1
3
,

2
3

}
, S6 =

{
1
6
,

5
6

}
.



Theorem
For all n ≥ 1:

n =
∑
d |n

φ(d).

Proof. Consider the set S = {1/n, 2/n, . . . , n/n} where the
fractions have been reduced to lowest terms. For d |n, let
Sd ⊆ S be the fractions with denominator d .

Then |Sd | = φ(d)
since c/d ∈ Sd iff 1 ≤ c ≤ d and gcd(c, d) = 1. Also
S = ]d |nSd so

n = |S| =
∑
d |n

|Sd | =
∑
d |n

φ(d).

Example. If n = 6 then

S =

{
1
6
,

2
6
,

3
6
,

4
6
,

5
6
,

6
6

}
=

{
1
6
,

1
3
,

1
2
,

2
3
,

5
6
,

1
1

}
.

S1 =

{
1
1

}
, S2 =

{
1
2

}
, S3 =

{
1
3
,

2
3

}
, S6 =

{
1
6
,

5
6

}
.



Theorem
For all n ≥ 1:

n =
∑
d |n

φ(d).

Proof. Consider the set S = {1/n, 2/n, . . . , n/n} where the
fractions have been reduced to lowest terms. For d |n, let
Sd ⊆ S be the fractions with denominator d . Then |Sd | = φ(d)
since c/d ∈ Sd iff 1 ≤ c ≤ d and gcd(c, d) = 1.

Also
S = ]d |nSd so

n = |S| =
∑
d |n

|Sd | =
∑
d |n

φ(d).

Example. If n = 6 then

S =

{
1
6
,

2
6
,

3
6
,

4
6
,

5
6
,

6
6

}
=

{
1
6
,

1
3
,

1
2
,

2
3
,

5
6
,

1
1

}
.

S1 =

{
1
1

}
, S2 =

{
1
2

}
, S3 =

{
1
3
,

2
3

}
, S6 =

{
1
6
,

5
6

}
.



Theorem
For all n ≥ 1:

n =
∑
d |n

φ(d).

Proof. Consider the set S = {1/n, 2/n, . . . , n/n} where the
fractions have been reduced to lowest terms. For d |n, let
Sd ⊆ S be the fractions with denominator d . Then |Sd | = φ(d)
since c/d ∈ Sd iff 1 ≤ c ≤ d and gcd(c, d) = 1. Also
S = ]d |nSd

so

n = |S| =
∑
d |n

|Sd | =
∑
d |n

φ(d).

Example. If n = 6 then

S =

{
1
6
,

2
6
,

3
6
,

4
6
,

5
6
,

6
6

}
=

{
1
6
,

1
3
,

1
2
,

2
3
,

5
6
,

1
1

}
.

S1 =

{
1
1

}
, S2 =

{
1
2

}
, S3 =

{
1
3
,

2
3

}
, S6 =

{
1
6
,

5
6

}
.



Theorem
For all n ≥ 1:

n =
∑
d |n

φ(d).

Proof. Consider the set S = {1/n, 2/n, . . . , n/n} where the
fractions have been reduced to lowest terms. For d |n, let
Sd ⊆ S be the fractions with denominator d . Then |Sd | = φ(d)
since c/d ∈ Sd iff 1 ≤ c ≤ d and gcd(c, d) = 1. Also
S = ]d |nSd so

n = |S|

=
∑
d |n

|Sd | =
∑
d |n

φ(d).

Example. If n = 6 then

S =

{
1
6
,

2
6
,

3
6
,

4
6
,

5
6
,

6
6

}
=

{
1
6
,

1
3
,

1
2
,

2
3
,

5
6
,

1
1

}
.

S1 =

{
1
1

}
, S2 =

{
1
2

}
, S3 =

{
1
3
,

2
3

}
, S6 =

{
1
6
,

5
6

}
.



Theorem
For all n ≥ 1:

n =
∑
d |n

φ(d).

Proof. Consider the set S = {1/n, 2/n, . . . , n/n} where the
fractions have been reduced to lowest terms. For d |n, let
Sd ⊆ S be the fractions with denominator d . Then |Sd | = φ(d)
since c/d ∈ Sd iff 1 ≤ c ≤ d and gcd(c, d) = 1. Also
S = ]d |nSd so

n = |S| =
∑
d |n

|Sd |

=
∑
d |n

φ(d).

Example. If n = 6 then

S =

{
1
6
,

2
6
,

3
6
,

4
6
,

5
6
,

6
6

}
=

{
1
6
,

1
3
,

1
2
,

2
3
,

5
6
,

1
1

}
.

S1 =

{
1
1

}
, S2 =

{
1
2

}
, S3 =

{
1
3
,

2
3

}
, S6 =

{
1
6
,

5
6

}
.



Theorem
For all n ≥ 1:

n =
∑
d |n

φ(d).

Proof. Consider the set S = {1/n, 2/n, . . . , n/n} where the
fractions have been reduced to lowest terms. For d |n, let
Sd ⊆ S be the fractions with denominator d . Then |Sd | = φ(d)
since c/d ∈ Sd iff 1 ≤ c ≤ d and gcd(c, d) = 1. Also
S = ]d |nSd so

n = |S| =
∑
d |n

|Sd | =
∑
d |n

φ(d).

Example. If n = 6 then

S =

{
1
6
,

2
6
,

3
6
,

4
6
,

5
6
,

6
6

}
=

{
1
6
,

1
3
,

1
2
,

2
3
,

5
6
,

1
1

}
.

S1 =

{
1
1

}
, S2 =

{
1
2

}
, S3 =

{
1
3
,

2
3

}
, S6 =

{
1
6
,

5
6

}
.



Inverting n =
∑

d |n φ(d) gives

Corollary
φ(n) =

∑
d |n

µ(d , n)d .

Mx ,y = f (x∧y) =⇒ det M =
∏
z∈P

g(z), g(z) =
∑
w≤z

µ(w , z)f (w).

Theorem (H. J. S. Smith, 1876)
If M is n× n with Mi,j = gcd(i , j) then det M = φ(1)φ(2) · · ·φ(n).
Proof. Let En = {1, 2 . . . , n} partially ordered by i ≤En j iff i |j .

Define f : En → R by f (d) = d . Then in Wilf’s Theorem
Mi,j = f (i ∧ j) = f (gcd(i , j)) = gcd(i , j).

g(n) =
∑

d≤En n

µ(d , n)f (d) =
∑
d |n

µ(d , n)d = φ(n).

∴ det [gcd(i , j)] = det
[
Mi,j

]
=

∏
d∈En

g(d) = φ(1) · · ·φ(n).
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