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We will prove a theorem which will have all these other results
as special cases. Furthermore, this theorem is trivial to prove.
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associated matrix M where Mg, = a(x,y). If the rows and
columns of M® are indexed by a linear extension L of P, then
M¢< is upper triangular. The following is our main theorem.
Theorem (Altinisik-S-Tuglu)

Let P be a poset and L be a linear extension of P. Suppose
o, € I(P) and M has rows and columns indexed by L where

Mey = 3 a(z.x)8(z.y).
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Then
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zeP

Proof. Lett denote transposition. Then
Mxy = Z M;'x ng = Z(Ma);,z Mf,y
z 4

So M = (M*)'M?, implying detM = detM* detM?. By
triangularity of M®, M# we have detM = [], a(z,2)3(z, 2).
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while the factors of detM are individual terms. In Smith’s
Theorem, the entries of M are individual terms, while the
factors of detM are sums: if we let

S={i : 1<i<n and gcd(i,n) =1} then we have

p(n)=#S=> 1.

ieS

To switch the role of sum and individual term we need Mdbius
inversion. The sums in the Main Theorem have two implicit
restrictions: a(z,x),3(z,y) #0impliesz <xandz <y. To
use Mobius inversion we need a single restriction z < w. To
collapse the two restrictions to one, we specialize to the case of
a meet semi-lattice.
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(b) A finite join semi-lattice having a 0 is a lattice.

Proof of (a). Every x,y € P have a meet, so every nonempty
Q C P has a meet. (Induct on |Q| which must be finite.) We
need to prove that any X,y € P have a join. Let
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Then Q # () because 1 € Q. So AQ exists and is the join:
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X,y € P have a meet (respectively, join).

Proposition

(a) A finite meet semi-lattice having a 1 is a lattice.
(b) A finite join semi-lattice having a 0 is a lattice.

Proof of (a). Every x,y € P have a meet, so every nonempty
Q C P has a meet. (Induct on |Q| which must be finite.) We
need to prove that any X,y € P have a join. Let

Q={z :z>x and z>y}.

Then Q # () because 1 € Q. So AQ exists and is the join:
1. Wehavez > x forall z € Q so AQ > x. Similarly AQ >y.
2. Ifz>xandz >ythenz € Q. Soz > AQ. ]
Example. 11, is a lattice: [, is finite and has a 1. Also, any
m=By/.../Bxand ¢ = C;/.../C| have a meet, namely the
partition whose blocks are the nonempty B; N C; for 1 <i <k
and 1 <j <. By the proposition, I, is a lattice.
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Let g : P — R be arbitrary. Substituting «(z,x) = g(z) and
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Let P be a meet semi-lattice. So
Mx,y = Z OJ(Z,X)ﬁ(Z,y) = Z Oé(Z,X)ﬁ(Z,y).
z<X, z<y Z<XAY
Let g : P — R be arbitrary. Substituting «(z,x) = g(z) and
B(z,y) = ((z,y) into the Main Theorem, we obtain
Mxy = Y 9(z) and detM = ] a(z,2)8(z,2) = [ 9(2).
ZSXAY zeP zeP
Definef : P — Rbyf(z) =>_,-,9(w)so

Mxy =f(x Ay) and detM =]] Z,u(W,Z)f(W)).
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Let P be a meet semi-lattice. So
Mx,y = Z Oé(Z,X)ﬂ(Z,y) = Z Oé(Z,X)ﬁ(Z,y).
z<X, z<y Z<XAY
Let g : P — R be arbitrary. Substituting «(z,x) = g(z) and
B(z,y) = ((z,y) into the Main Theorem, we obtain
Mxy = Y 9(z) and detM = ] a(z,2)8(z,2) = [ 9(2).
Z<XAY zeP zeP
Definef : P — Rbyf(z) =>_,-,9(w)so

Mxy =f(x Ay) and detM =]] Zp(W,Z)f(W)).

z w<z
Theorem (Wilf, 1968)
Letf : P — R where P is a meet semi-lattice and let M be the
matrix with My y = f(x Ay). Then

detM = [ ] 9(2)

zeP

where g(z) = >, <, u(w, z)f(w).
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detM = f(x)f(y)f(z) + 2f(x)% — £(x)® — F(x)?f(y) — f(x)%f(2).
On the other hand

g(x) = p(x,x)f(x) = f(x),
a(y) = uly,y)f(y) + u(x,y)f(x) =f(y) - f(x),
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Myy =f(x Ay) = detM =[] g(2)
where g(z) = ¥ <, (W, 2)f(W).

y z
Example. Let P — \/
X

detM = f(x)f(y)f(z) + 2f(x)% — £(x)® — F(x)?f(y) — f(x)%f(2).
On the other hand
g(x) = p(x, x)f(x) = f(x),

a(y) = uly,y)f(y) + u(x,y)f(x) =f(y) - f(x),
9(z) = (z,2)f(z) + p(x, 2)f (x) = f(z) — ().

=] 5 = = £ DA



[T9@)

f(x ANy) = detM =

My y

Example. Let P

detM = f(x)f(y)f(z) + 2f(x)% — £(x)® — F(x)?f(y) — f(x)%f(2).

On the other hand

9(x)a(y)a(z) = f(x) [F(y) — (I [F(z) — F(x)]



Myy =f(x Ay) = detM =[] g(2)

where g(z) = >, <, (W, z)f(\fve)F.’
y z
Example. Let P —
X X 'y z
Mo X f(x) f(x) f(x)
Sy {f(X) f(y) f(X)}
z f(x) f(x) f(z)

detM = f(x)f(y)f(z) + 2f(x)% — £(x)® — F(x)?f(y) — f(x)%f(2).

On the other hand

g(x) = p(x,x)f(x) = f(x),

a(y) = u(y,y)f(y) + u(x,y)f(x) =f(y) — f(x)

9(z) = m(z,2)f(z) + p(x, 2)f (x) = f(z) — f(x)
g(x)a(y)a(z) =f(x)[f(y) — f(x)][f(z) — f(x)] = detM.

E DAl
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Proof. Consider the setS = {1/n,2/n,...,n/n} where the
fractions have been reduced to lowest terms. For d|n, let

Sg C S be the fractions with denominator d. Then |Sy| = ¢(d)
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Theorem (H. J. S. Smith, 1876)

If M is n x nwith M;; = gcd(i, j) then detM = ¢(1)¢(2) - - - ¢(n).
Proof. LetE, = {1,2...,n} partially ordered by i <g, j iff i|j.
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Proof. LetE, = {1,2...,n} partially ordered by i <g, j iff i|j.
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Inverting n =3y, #(d) gives

Corollary o(n) = Zu(d,n)d. -
din
Myy =f(xAy) = detM = [ 9(2), 9(z) = u(w,z)f(w).
zeP w<z

Theorem (H. J. S. Smith, 1876)

If M is n x nwith M;; = gcd(i, j) then detM = ¢(1)¢(2) - - - ¢(n).
Proof. LetE, = {1,2...,n} partially ordered by i <g, j iff i|j.
Definef : E, — Rbyf(d) =d. Then in Wilf’s Theorem
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Theorem (H. J. S. Smith, 1876)
If M is n x nwith M;; = gcd(i, j) then detM = ¢(1)¢(2) - - - ¢(n).
Proof. LetE, = {1,2...,n} partially ordered by i <g, j iff i|j.
Definef : E, — Rbyf(d) =d. Then in Wilf’s Theorem
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