Möbius Functions of Posets III: Topology of Posets

Bruce Sagan Department of Mathematics Michigan State University East Lansing, MI 48824-1027 sagan@math.msu.edu www.math.msu.edu/~sagan

June 27, 2007

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Shellability of Simplicial Complexes

The Euler Characteristic

The Order Complex

Lexicographic Shellability

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Outline

Shellability of Simplicial Complexes

The Euler Characteristic

The Order Complex

Lexicographic Shellability

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A *partition* of a set S is a family π of nonempty sets B_1, \ldots, B_k called *blocks* such that $\bigcup_i B_i = S$ (disjoint union).

A *partition* of a set *S* is a family π of nonempty sets B_1, \ldots, B_k called *blocks* such that $\uplus_i B_i = S$ (disjoint union). We write $\pi = B_1 / \ldots / B_k \vdash S$ omitting braces and commas.

(ロ)、(型)、(E)、(E)、 E) のQの

A *partition* of a set S is a family π of nonempty sets B_1, \ldots, B_k called *blocks* such that $\boxplus_i B_i = S$ (disjoint union). We write $\pi = B_1 / \ldots / B_k \vdash S$ omitting braces and commas. **Ex.** $\pi = acf/bg/de \vdash abcdefg$.

A *partition* of a set *S* is a family π of nonempty sets B_1, \ldots, B_k called *blocks* such that $\biguplus_i B_i = S$ (disjoint union). We write $\pi = B_1 / \ldots / B_k \vdash S$ omitting braces and commas. **Ex.** $\pi = acf/bg/de \vdash abcdefg$. The *partition lattice* is $\Pi_n = \{\pi : \pi \vdash 12 \ldots n\}$ ordered by

 $B_1/\ldots/B_k \leq C_1/\ldots/C_l$ if for each B_i there is a C_j with $B_j \subseteq C_j$.

(ロ) (同) (三) (三) (三) (○) (○)

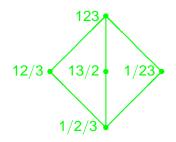
Ex. ⊓₃,

Ex. ⊓₃,

1/2/3 •

Ex. ⊓₃,

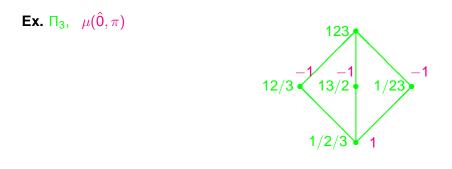
Ex. ⊓₃,

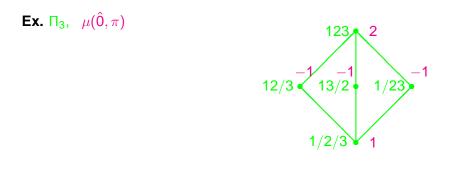


◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

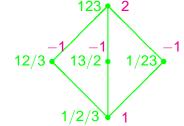


◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの





A *partition* of a set *S* is a family π of nonempty sets B_1, \ldots, B_k called *blocks* such that $\biguplus_i B_i = S$ (disjoint union). We write $\pi = B_1 / \ldots / B_k \vdash S$ omitting braces and commas. **Ex.** $\pi = acf/bg/de \vdash abcdefg$. The *partition lattice* is $\Pi_n = \{\pi : \pi \vdash 12 \ldots n\}$ ordered by $B_1 / \ldots / B_k \leq C_1 / \ldots / C_l$ if for each B_i there is a C_j with $B_i \subseteq C_j$. If poset *P* has a $\hat{0}$ and a $\hat{1}$ we write $\mu(P) = \mu_P(\hat{0}, \hat{1})$ and similarly for other elements of l(P). **Ex.** Π_3 , $\mu(\hat{0}, \pi)$



A *partition* of a set S is a family π of nonempty sets B_1, \ldots, B_k called *blocks* such that $ightarrow_i B_i = S$ (disjoint union). We write $\pi = B_1 / \dots / B_k \vdash S$ omitting braces and commas. **Ex.** $\pi = acf/bg/de \vdash abcdefg.$ The *partition lattice* is $\Pi_n = \{\pi : \pi \vdash 12 \dots n\}$ ordered by $B_1/\ldots/B_k \leq C_1/\ldots/C_l$ if for each B_i there is a C_i with $B_i \subseteq C_i$. If poset *P* has a $\hat{0}$ and a $\hat{1}$ we write $\mu(P) = \mu_P(\hat{0}, \hat{1})$ and similarly for other elements of I(P). **Ex.** Π_3 , $\mu(\hat{0}, \pi)$

A *partition* of a set S is a family π of nonempty sets B_1, \ldots, B_k called *blocks* such that $ightarrow_i B_i = S$ (disjoint union). We write $\pi = B_1 / \dots / B_k \vdash S$ omitting braces and commas. **Ex.** $\pi = acf/bg/de \vdash abcdefg.$ The *partition lattice* is $\Pi_n = \{\pi : \pi \vdash 12 \dots n\}$ ordered by $B_1/\ldots/B_k \leq C_1/\ldots/C_l$ if for each B_i there is a C_i with $B_i \subseteq C_i$. If poset *P* has a $\hat{0}$ and a $\hat{1}$ we write $\mu(P) = \mu_P(\hat{0}, \hat{1})$ and similarly for other elements of I(P). **Ex.** Π_3 , $\mu(\hat{0}, \pi)$

Conjecture

We have: $\mu(\Pi_n) = (-1)^{n-1}(n-1)!.$

$$F \in \Delta$$
 and $F' \subseteq F \implies F' \in \Delta$.

$$F \in \Delta$$
 and $F' \subseteq F \implies F' \in \Delta$.

Example. $\Delta = \{\emptyset, u, v, w, x, uv, uw, vw, wx, uvw\}$

$$F \in \Delta$$
 and $F' \subseteq F \implies F' \in \Delta$.

A *geometric realization* of Δ has a (d - 1)-dimensional simplex (tetrahedron) for each *d*-element set in Δ .

Example. $\Delta = \{\emptyset, u, v, w, x, uv, uw, vw, wx, uvw\}$

$$F \in \Delta$$
 and $F' \subseteq F \implies F' \in \Delta$.

A *geometric realization* of Δ has a (d - 1)-dimensional simplex (tetrahedron) for each *d*-element set in Δ .

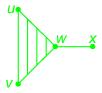
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Example. $\Delta = \{\emptyset, u, v, w, x, uv, uw, vw, wx, uvw\}$

$$F \in \Delta$$
 and $F' \subseteq F \implies F' \in \Delta$.

A geometric realization of Δ has a (d - 1)-dimensional simplex (tetrahedron) for each *d*-element set in Δ . The *dimension* of $F \in \Delta$ is dim F = #F - 1.

Example. $\Delta = \{\emptyset, u, v, w, x, uv, uw, vw, wx, uvw\}$



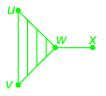
$$F \in \Delta$$
 and $F' \subseteq F \implies F' \in \Delta$.

A geometric realization of Δ has a (d - 1)-dimensional simplex (tetrahedron) for each *d*-element set in Δ . The dimension of $F \in \Delta$ is dim F = #F - 1. Face *F* is a vertex or edge if dim F = 0 or 1, respectively. **Example.** $\Delta = \{\emptyset, u, v, w, x, uv, uw, vw, wx, uvw\}$

$$F \in \Delta$$
 and $F' \subseteq F \implies F' \in \Delta$.

A geometric realization of Δ has a (d - 1)-dimensional simplex (tetrahedron) for each *d*-element set in Δ . The dimension of $F \in \Delta$ is dim F = #F - 1. Face *F* is a vertex or edge if dim F = 0 or 1, respectively. **Example.** $\Delta = \{\emptyset, u, v, w, x, uv, uw, vw, wx, uvw\}$

dim u = 0 a vertex, dim uv = 1, an edge dim uvw = 2.



$$F \in \Delta$$
 and $F' \subseteq F \implies F' \in \Delta$.

A geometric realization of Δ has a (d - 1)-dimensional simplex (tetrahedron) for each *d*-element set in Δ . The *dimension* of $F \in \Delta$ is dim F = #F - 1. Face *F* is a vertex or edge if dim F = 0 or 1, respectively. **Example.** $\Delta = \{\emptyset, u, v, w, x, uv, uw, vw, wx, uvw\}$ dim u = 0 a vertex, dim uv = 1, an edge dim uvw = 2.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Face *F* is a *facet* if it is containment-maximal in Δ .

$$F \in \Delta$$
 and $F' \subseteq F \implies F' \in \Delta$.

A geometric realization of Δ has a (d - 1)-dimensional simplex (tetrahedron) for each *d*-element set in Δ . The *dimension* of $F \in \Delta$ is dim F = #F - 1. Face *F* is a vertex or edge if dim F = 0 or 1, respectively. **Example.** $\Delta = \{\emptyset, u, v, w, x, uv, uw, vw, wx, uvw\}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

dim u = 0 a vertex, dim uv = 1, an edge dim uvw = 2. uvw and wx are facets.

Face *F* is a *facet* if it is containment-maximal in Δ .

$$F \in \Delta$$
 and $F' \subseteq F \implies F' \in \Delta$.

A geometric realization of Δ has a (d - 1)-dimensional simplex (tetrahedron) for each *d*-element set in Δ . The *dimension* of $F \in \Delta$ is dim F = #F - 1. Face *F* is a vertex or edge if dim F = 0 or 1, respectively. **Example.** $\Delta = \{\emptyset, u, v, w, x, uv, uw, vw, wx, uvw\}$

dim u = 0 a vertex, dim uv = 1, an edge dim uvw = 2. uvw and wx are facets.

Face *F* is a *facet* if it is containment-maximal in Δ . We say Δ is *pure of dimension d*, and write dim $\Delta = d$, if dim *F* = *d* for all facets *F* of Δ .

$$F \in \Delta$$
 and $F' \subseteq F \implies F' \in \Delta$.

A geometric realization of Δ has a (d - 1)-dimensional simplex (tetrahedron) for each *d*-element set in Δ . The *dimension* of $F \in \Delta$ is dim F = #F - 1. Face *F* is a vertex or edge if dim F = 0 or 1, respectively.

Example. $\Delta = \{\emptyset, u, v, w, x, uv, uw, vw, wx, uvw\}$

dim u = 0 a vertex, dim uv = 1, an edge dim uvw = 2. uvw and wx are facets. Not pure.

Face *F* is a *facet* if it is containment-maximal in Δ . We say Δ is *pure of dimension d*, and write dim $\Delta = d$, if dim *F* = *d* for all facets *F* of Δ .

$$F \in \Delta$$
 and $F' \subseteq F \implies F' \in \Delta$.

A geometric realization of Δ has a (d - 1)-dimensional simplex (tetrahedron) for each *d*-element set in Δ . The *dimension* of $F \in \Delta$ is dim F = #F - 1. Face *F* is a vertex or edge if dim F = 0 or 1, respectively.

Example. $\Delta = \{\emptyset, u, v, w, x, uv, uw, vw, wx, uvw\}$

dim u = 0 a vertex, dim uv = 1, an edge dim uvw = 2. uvw and wx are facets. Not pure.

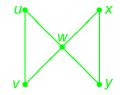
Face *F* is a *facet* if it is containment-maximal in Δ . We say Δ is *pure of dimension d*, and write dim $\Delta = d$, if dim *F* = *d* for all facets *F* of Δ .

Note. A simplicial complex pure of dimension 1 is just a graph.

 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

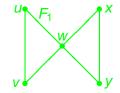
 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

Example. For the graph at right



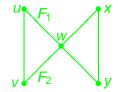
 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

Example. For the graph at right *uw*,



 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

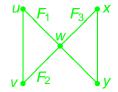
Example. For the graph at right *uw*, *vw*,



 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

Example. For the graph at right

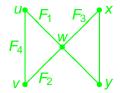
UW, *VW*, *WX*,



 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

Example. For the graph at right

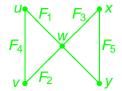
uw, *vw*, *wx*, *uv*,



 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

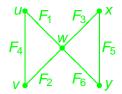
Example. For the graph at right

uw, *vw*, *wx*, *uv*, *xy*,



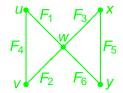
 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

Example. For the graph at right *uw*, *vw*, *wx*, *uv*, *xy*, *wy* is a shelling.



 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

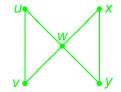
Example. For the graph at right uw, vw, wx, uv, xy, wy is a shelling. So Δ is shellable.



 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

Example. For the graph at right

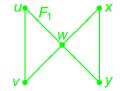
Any sequence beginning



 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

Example. For the graph at right

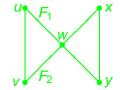
Any sequence beginning uw,



 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

Example. For the graph at right

Any sequence beginning *uw*, *vw*,

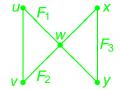


(日) (日) (日) (日) (日) (日) (日)

 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

Example. For the graph at right

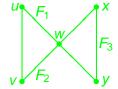
Any sequence beginning *uw*, *vw*, *xy*



 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

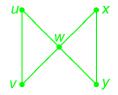
Example. For the graph at right

Any sequence beginning uw, vw, xyis not a shelling since $xy \cap (uw \cup vw) = \emptyset$.



 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

Example. For the graph at right

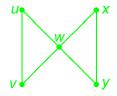


◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Note. A graph is shellable iff it is connected.

 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

Example. For the graph at right



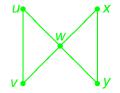
(日) (日) (日) (日) (日) (日) (日)

$$r(F_j) = \{v \text{ a vertex of } F_j : F_j - v \subseteq (\cup_{i < j} F_i)\}.$$

 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

Example. For the graph at right

In the original shelling:



(日) (日) (日) (日) (日) (日) (日)

$$r(F_j) = \{v \text{ a vertex of } F_j : F_j - v \subseteq (\cup_{i < j} F_i)\}.$$

 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

Example. For the graph at right

In the original shelling: $r(uw) = \emptyset$,

$$r(F_j) = \{v \text{ a vertex of } F_j : F_j - v \subseteq (\cup_{i < j} F_i)\}.$$

 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

Example. For the graph at right

(日) (日) (日) (日) (日) (日) (日)

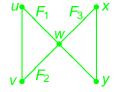
In the original shelling: $r(uw) = \emptyset$, r(vw) = v,

$$r(F_j) = \{v \text{ a vertex of } F_j : F_j - v \subseteq (\cup_{i < j} F_i)\}.$$

 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

Example. For the graph at right

In the original shelling: $r(uw) = \emptyset$, r(vw) = v, r(wx) = x,



(日) (日) (日) (日) (日) (日) (日)

$$r(F_j) = \{v \text{ a vertex of } F_j : F_j - v \subseteq (\cup_{i < j} F_i)\}.$$

 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

Example. For the graph at right

 F_4 F_2 F_2 F_2

(ロ) (同) (三) (三) (三) (○) (○)

In the original shelling: $r(uw) = \emptyset$, r(vw) = v, r(wx) = x, r(uv) = uv,

$$r(F_j) = \{v \text{ a vertex of } F_j : F_j - v \subseteq (\cup_{i < j} F_i)\}.$$

 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

Example. For the graph at right

 F_4 F_2 F_3 F_5 F_5

(日) (日) (日) (日) (日) (日) (日)

In the original shelling: $r(uw) = \emptyset$, r(vw) = v, r(wx) = x, r(uv) = uv, r(xy) = y,

$$r(F_j) = \{v \text{ a vertex of } F_j : F_j - v \subseteq (\cup_{i < j} F_i)\}.$$

 $F_j \bigcap (\cup_{i < j} F_i)$ is a union of (d - 1)-dimensional faces of F_j .

Example. For the graph at right

 F_4 F_2 F_6 F_5

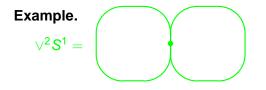
(日) (日) (日) (日) (日) (日) (日)

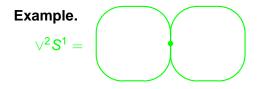
In the original shelling: $r(uw) = \emptyset$, r(vw) = v, r(wx) = x, r(uv) = uv, r(xy) = y, r(wy) = wy.

$$r(F_j) = \{v \text{ a vertex of } F_j : F_j - v \subseteq (\cup_{i < j} F_i)\}.$$

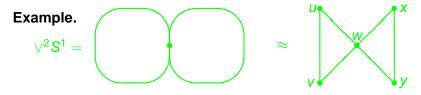
Let S^d denote the *d*-sphere (sphere of dimension *d*).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで



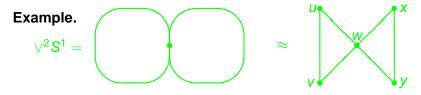


If topological spaces X and Y are homeomorphic, write $X \approx Y$.



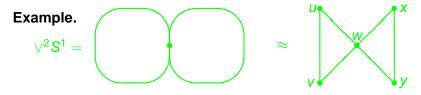
If topological spaces X and Y are homeomorphic, write $X \approx Y$.

<ロ> < @> < @> < @> < @> < @</p>



If topological spaces X and Y are homeomorphic, write $X \approx Y$. Theorem Let Δ be a shellable simplicial complex pure of dimension d. Then

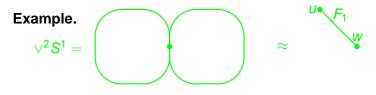
 $\Delta \approx \vee^k S^d$



If topological spaces X and Y are homeomorphic, write $X \approx Y$.

Theorem Let Δ be a shellable simplicial complex pure of dimension d. Then

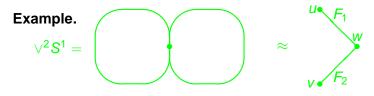
 $\Delta \approx \vee^k S^d$



 $r(uw) = \emptyset$,

If topological spaces X and Y are homeomorphic, write $X \approx Y$. Theorem Let Δ be a shellable simplicial complex pure of dimension d. Then

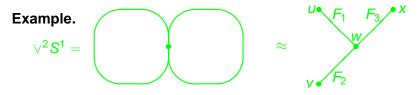
 $\Delta \approx \vee^k S^d$



$$r(uw) = \emptyset, \quad r(vw) = v,$$

If topological spaces X and Y are homeomorphic, write $X \approx Y$. Theorem Let Δ be a shellable simplicial complex pure of dimension d. Then

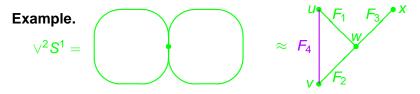
 $\Delta \approx \vee^k S^d$



 $r(uw) = \emptyset$, r(vw) = v, r(wx) = x,

If topological spaces X and Y are homeomorphic, write $X \approx Y$. Theorem Let Δ be a shellable simplicial complex pure of dimension d. Then

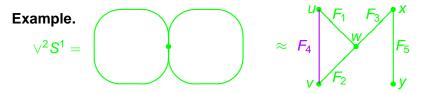
 $\Delta \approx \vee^k S^d$



 $r(uw) = \emptyset$, r(vw) = v, r(wx) = x, r(uv) = uv,

If topological spaces X and Y are homeomorphic, write $X \approx Y$. Theorem Let Δ be a shellable simplicial complex pure of dimension d. Then

 $\Delta \approx \vee^k S^d$



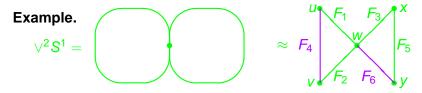
 $r(uw) = \emptyset$, r(vw) = v, r(wx) = x, r(uv) = uv, r(xy) = y,

If topological spaces X and Y are homeomorphic, write $X \approx Y$.

Theorem

Let Δ be a shellable simplicial complex pure of dimension d. Then

 $\Delta \approx \vee^k \mathbb{S}^d$



 $r(uw) = \emptyset$, r(vw) = v, r(wx) = x, r(uv) = uv, r(xy) = y, r(wy) = wy.

If topological spaces X and Y are homeomorphic, write $X \approx Y$.

Theorem

Let Δ be a shellable simplicial complex pure of dimension d. Then

$$\Delta \approx \vee^{k} \mathsf{S}^{d}$$

Shellability of Simplicial Complexes

The Euler Characteristic

The Order Complex

Lexicographic Shellability

Let *X* be a topological space and \mathbb{Q} the rational numbers.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Let X be a topological space and \mathbb{Q} the rational numbers. Let $\tilde{H}_i(X)$ = the *i*th reduced homology group of X over \mathbb{Q} .

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Let X be a topological space and \mathbb{Q} the rational numbers. Let

 $\tilde{H}_i(X) = \text{ the } i\text{th reduced homology group of } X \text{ over } \mathbb{Q}.$ $= \underbrace{\mathbb{Q} \oplus \cdots \oplus \mathbb{Q}}^k$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let X be a topological space and \mathbb{Q} the rational numbers. Let

 $\tilde{H}_i(X)$ = the *i*th reduced homology group of X over \mathbb{Q} .

$$= \underbrace{\mathbb{Q} \oplus \cdots \oplus \mathbb{Q}}^{k}$$
$$= \oplus^{k} \mathbb{Q}$$

Let X be a topological space and \mathbb{Q} the rational numbers. Let

 $\tilde{H}_i(X)$ = the *i*th reduced homology group of X over \mathbb{Q} .

$$= \underbrace{\mathbb{Q} \oplus \cdots \oplus \mathbb{Q}}^{k}$$
$$= \oplus^{k} \mathbb{Q}$$

where $\tilde{\beta}_i(X) = k$ is the *ith reduced Betti number* of X

 $\tilde{H}_i(X)$ = the *i*th reduced homology group of X over \mathbb{Q} .

$$= \underbrace{\mathbb{Q} \oplus \cdots \oplus \mathbb{Q}}^{k}$$
$$= \oplus^{k} \mathbb{Q}$$

where $\tilde{\beta}_i(X) = k$ is the *ith reduced Betti number* of X and roughly measures the number of cycles in X of dimension *i* which bound a hole in X.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

 $\tilde{H}_i(X) =$ the *i*th reduced homology group of X over \mathbb{Q} .

$$= \underbrace{\mathbb{Q} \oplus \cdots \oplus \mathbb{Q}}^{k}$$
$$= \oplus^{k} \mathbb{Q}$$

where $\tilde{\beta}_i(X) = k$ is the *ith reduced Betti number* of X and roughly measures the number of cycles in X of dimension *i* which bound a hole in X.

Example. For $X = S^2$ we have $\tilde{H}_2(S^2) = \mathbb{Q}$ since S^2 itself is a cycle with a hole in the center.

 $\tilde{H}_i(X)$ = the *i*th reduced homology group of X over \mathbb{Q} .

$$= \underbrace{\mathbb{Q} \oplus \cdots \oplus \mathbb{Q}}^{k}$$
$$= \oplus^{k} \mathbb{Q}$$

where $\tilde{\beta}_i(X) = k$ is the *ith reduced Betti number* of X and roughly measures the number of cycles in X of dimension *i* which bound a hole in X.

Example. For $X = S^2$ we have $\tilde{H}_2(S^2) = \mathbb{Q}$ since S^2 itself is a cycle with a hole in the center. Also $\tilde{H}_1(S^2) = 0$ since any 1-dimensional cycle on S^2 just bounds part of S^2 .

 $\tilde{H}_i(X) =$ the *i*th reduced homology group of X over \mathbb{Q} .

$$= \underbrace{\mathbb{Q} \oplus \cdots \oplus \mathbb{Q}}^{k}$$
$$= \oplus^{k} \mathbb{Q}$$

where $\tilde{\beta}_i(X) = k$ is the *ith reduced Betti number* of X and roughly measures the number of cycles in X of dimension *i* which bound a hole in X.

Example. For $X = S^2$ we have $\tilde{H}_2(S^2) = \mathbb{Q}$ since S^2 itself is a cycle with a hole in the center. Also $\tilde{H}_1(S^2) = 0$ since any 1-dimensional cycle on S^2 just bounds part of S^2 . In general

$$ilde{H}_i(\mathcal{S}^d) = \left\{ egin{array}{cc} \mathbb{Q} & ext{if } i = d, \ 0 & ext{if } i
eq d. \end{array}
ight.$$

 $\tilde{H}_i(X) =$ the *i*th reduced homology group of X over \mathbb{Q} .

$$= \underbrace{\mathbb{Q} \oplus \cdots \oplus \mathbb{Q}}^{k}$$
$$= \oplus^{k} \mathbb{Q}$$

where $\tilde{\beta}_i(X) = k$ is the *ith reduced Betti number* of X and roughly measures the number of cycles in X of dimension *i* which bound a hole in X.

Example. For $X = S^2$ we have $\tilde{H}_2(S^2) = \mathbb{Q}$ since S^2 itself is a cycle with a hole in the center. Also $\tilde{H}_1(S^2) = 0$ since any 1-dimensional cycle on S^2 just bounds part of S^2 . In general

$$\widetilde{H}_i(S^d) = \begin{cases} \mathbb{Q} & \text{if } i = d, \\ 0 & \text{if } i \neq d. \end{cases}$$

Also taking wedges takes direct sums of homology groups.

 $\tilde{H}_i(X) =$ the *i*th reduced homology group of X over \mathbb{Q} .

$$= \underbrace{\mathbb{Q} \oplus \cdots \oplus \mathbb{Q}}^{k}$$
$$= \oplus^{k} \mathbb{Q}$$

where $\tilde{\beta}_i(X) = k$ is the *ith reduced Betti number* of X and roughly measures the number of cycles in X of dimension *i* which bound a hole in X.

Example. For $X = S^2$ we have $\tilde{H}_2(S^2) = \mathbb{Q}$ since S^2 itself is a cycle with a hole in the center. Also $\tilde{H}_1(S^2) = 0$ since any 1-dimensional cycle on S^2 just bounds part of S^2 . In general

$$\widetilde{H}_i(S^d) = \begin{cases} \mathbb{Q} & \text{if } i = d, \\ 0 & \text{if } i \neq d. \end{cases}$$

Also taking wedges takes direct sums of homology groups. Proposition

We have
$$\tilde{H}_i(\vee^k S^d) = \begin{cases} \oplus^k \mathbb{Q} & \text{if } i = d_i \\ 0 & \text{if } i \neq d_i \end{cases}$$

$$\widetilde{\chi}(X) = \sum_{i \ge -1} (-1)^i \widetilde{\beta}_i(X)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\tilde{\chi}(X) = \sum_{i \ge -1} (-1)^i \tilde{\beta}_i(X) = -\tilde{\beta}_{-1}(X) + \tilde{\beta}_0(X) - \tilde{\beta}_1(X) + \cdots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\tilde{\chi}(X) = \sum_{i \ge -1} (-1)^i \tilde{\beta}_i(X) = -\tilde{\beta}_{-1}(X) + \tilde{\beta}_0(X) - \tilde{\beta}_1(X) + \cdots$$

By the previous proposition $\tilde{\beta}_i(\vee^k S^d) = \begin{cases} k & \text{if } i = d, \\ 0 & \text{if } i \neq d. \end{cases}$

$$\tilde{\chi}(X) = \sum_{i \ge -1} (-1)^i \tilde{\beta}_i(X) = -\tilde{\beta}_{-1}(X) + \tilde{\beta}_0(X) - \tilde{\beta}_1(X) + \cdots$$

By the previous proposition $\tilde{\beta}_i(\vee^k S^d) = \begin{cases} k & \text{if } i = d, \\ 0 & \text{if } i \neq d. \end{cases}$
Corollary

We have $\tilde{\chi}(\vee^k S^d) = (-1)^d k$.

$$\tilde{\chi}(X) = \sum_{i \ge -1} (-1)^i \tilde{\beta}_i(X) = -\tilde{\beta}_{-1}(X) + \tilde{\beta}_0(X) - \tilde{\beta}_1(X) + \cdots$$

By the previous proposition $\tilde{\beta}_i(\vee^k S^d) = \begin{cases} k & \text{if } i = d, \\ 0 & \text{if } i \neq d. \end{cases}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Corollary

We have $\tilde{\chi}(\vee^k \mathbb{S}^d) = (-1)^d k$.

The *ith face number* of a simplicial complex Δ is $f_i(\Delta) = \#$ of faces of dimension *i*

$$\tilde{\chi}(X) = \sum_{i \ge -1} (-1)^i \tilde{\beta}_i(X) = -\tilde{\beta}_{-1}(X) + \tilde{\beta}_0(X) - \tilde{\beta}_1(X) + \cdots$$

By the previous proposition $\tilde{\beta}_i(\vee^k S^d) = \begin{cases} k & \text{if } i = d, \\ 0 & \text{if } i \neq d. \end{cases}$
Corollary

We have $\tilde{\chi}(\vee^k S^d) = (-1)^d k$.

The *ith face number* of a simplicial complex Δ is

 $f_i(\Delta) = \#$ of faces of dimension i = # of faces of cardinality i + 1.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$$\tilde{\chi}(X) = \sum_{i \ge -1} (-1)^i \tilde{\beta}_i(X) = -\tilde{\beta}_{-1}(X) + \tilde{\beta}_0(X) - \tilde{\beta}_1(X) + \cdots$$

By the previous proposition $\tilde{\beta}_i(\vee^k S^d) = \begin{cases} k & \text{if } i = d, \\ 0 & \text{if } i \neq d. \end{cases}$
Corollary
We have $\tilde{\chi}(\vee^k S^d) = (-1)^d k.$

The *ith face number* of a simplicial complex Δ is $f_i(\Delta) = \#$ of faces of dimension i = # of faces of cardinality i + 1.

Theorem $\tilde{\chi}(\Delta) = \sum_{i \ge -1} (-1)^i f_i(X) = -f_{-1}(X) + f_0(X) - f_1(X) + \cdots$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$$\tilde{\chi}(X) = \sum_{i \ge -1} (-1)^i \tilde{\beta}_i(X) = -\tilde{\beta}_{-1}(X) + \tilde{\beta}_0(X) - \tilde{\beta}_1(X) + \cdots$$
By the previous proposition $\tilde{\beta}_i(\vee^k S^d) = \begin{cases} k & \text{if } i = d, \\ 0 & \text{if } i \neq d. \end{cases}$
Corollary
We have $\tilde{\chi}(\vee^k S^d) = (-1)^d k$.
The *i*th face number of a simplicial complex Δ is
 $f_i(\Delta) = \#$ of faces of dimension $i = \#$ of faces of cardinality $i + 1$.
Theorem
 $\tilde{\chi}(\Delta) = \sum_{i \ge -1} (-1)^i f_i(X) = -f_{-1}(X) + f_0(X) - f_1(X) + \cdots$

Example. For the graph X at right: $X \approx \vee^2 S^1$,

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

$$\tilde{\chi}(X) = \sum_{i \ge -1} (-1)^i \tilde{\beta}_i(X) = -\tilde{\beta}_{-1}(X) + \tilde{\beta}_0(X) - \tilde{\beta}_1(X) + \cdots$$
By the previous proposition $\tilde{\beta}_i(\vee^k S^d) = \begin{cases} k & \text{if } i = d, \\ 0 & \text{if } i \neq d. \end{cases}$
Corollary
We have $\tilde{\chi}(\vee^k S^d) = (-1)^d k$.

Example. For the graph X at right: $X \approx \vee^2 S^1$, by the Corollary $\tilde{\chi}(X) = \tilde{\chi}(\vee^2 S^1) = -2$.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQ@

$$\tilde{\chi}(X) = \sum_{i \ge -1} (-1)^i \tilde{\beta}_i(X) = -\tilde{\beta}_{-1}(X) + \tilde{\beta}_0(X) - \tilde{\beta}_1(X) + \cdots$$
By the previous proposition $\tilde{\beta}_i(\vee^k S^d) = \begin{cases} k & \text{if } i = d, \\ 0 & \text{if } i \neq d. \end{cases}$
Corollary
We have $\tilde{\chi}(\vee^k S^d) = (-1)^d k$.
The *ith face number* of a simplicial complex Δ is
 $f_i(\Delta) = \#$ of faces of dimension $i = \#$ of faces of cardinality $i + 1$.
Theorem
 $\tilde{\chi}(\Delta) = \sum_{i \ge -1} (-1)^i f_i(X) = -f_{-1}(X) + f_0(X) - f_1(X) + \cdots$
Example. For the graph X at right: $X \approx \vee^2 S^1$,
by the Corollary $\tilde{\chi}(X) = \tilde{\chi}(\vee^2 S^1) = -2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 $f_{-1}(X) = 1$ counting $F = \emptyset$,

$$\tilde{\chi}(X) = \sum_{i \ge -1} (-1)^i \tilde{\beta}_i(X) = -\tilde{\beta}_{-1}(X) + \tilde{\beta}_0(X) - \tilde{\beta}_1(X) + \cdots$$
By the previous proposition $\tilde{\beta}_i(\vee^k S^d) = \begin{cases} k & \text{if } i = d, \\ 0 & \text{if } i \neq d. \end{cases}$
Corollary
We have $\tilde{\chi}(\vee^k S^d) = (-1)^d k$.
The *ith face number* of a simplicial complex Δ is
 $f_i(\Delta) = \#$ of faces of dimension $i = \#$ of faces of cardinality $i + 1$.
Theorem
 $\tilde{\chi}(\Delta) = \sum_{i \ge -1} (-1)^i f_i(X) = -f_{-1}(X) + f_0(X) - f_1(X) + \cdots$
Example. For the graph X at right: $X \approx \vee^2 S^1$,
by the Corollary $\tilde{\chi}(X) = \tilde{\chi}(\vee^2 S^1) = -2$.
 $f_{-1}(X) = 1$ counting $F = \emptyset$,
 $f_0(X) = 5$ counting $F = u, v, w, x, y$,

$$\tilde{\chi}(X) = \sum_{i \ge -1} (-1)^i \tilde{\beta}_i(X) = -\tilde{\beta}_{-1}(X) + \tilde{\beta}_0(X) - \tilde{\beta}_1(X) + \cdots$$
By the previous proposition $\tilde{\beta}_i(\vee^k S^d) = \begin{cases} k & \text{if } i = d, \\ 0 & \text{if } i \neq d. \end{cases}$
Corollary
We have $\tilde{\chi}(\vee^k S^d) = (-1)^d k$.
The *i*th face number of a simplicial complex Δ is
 $f_i(\Delta) = \#$ of faces of dimension $i = \#$ of faces of cardinality $i + 1$.
Theorem
 $\tilde{\chi}(\Delta) = \sum_{i \ge -1} (-1)^i f_i(X) = -f_{-1}(X) + f_0(X) - f_1(X) + \cdots$
Example. For the graph X at right: $X \approx \vee^2 S^1$,
by the Corollary $\tilde{\chi}(X) = \tilde{\chi}(\vee^2 S^1) = -2$.
 $f_{-1}(X) = 1$ counting $F = \emptyset$,
 $f_0(X) = 5$ counting $F = u$, v , w , x , y ,
 $f_1(X) = 6$ counting $F = uv$, uw , vw , wx , wy , xy ,

$$\tilde{\chi}(X) = \sum_{i \ge -1} (-1)^i \tilde{\beta}_i(X) = -\tilde{\beta}_{-1}(X) + \tilde{\beta}_0(X) - \tilde{\beta}_1(X) + \cdots$$
By the previous proposition $\tilde{\beta}_i(\vee^k S^d) = \begin{cases} k & \text{if } i = d, \\ 0 & \text{if } i \neq d. \end{cases}$
Corollary

We have $\tilde{\chi}(\vee^k S^d) = (-1)^d k$.

The *i*th face number of a simplicial complex Δ is
 $f_i(\Delta) = \#$ of faces of dimension $i = \#$ of faces of cardinality $i + 1$.

Theorem
 $\tilde{\chi}(\Delta) = \sum_{i \ge -1} (-1)^i f_i(X) = -f_{-1}(X) + f_0(X) - f_1(X) + \cdots$

Example. For the graph X at right: $X \approx \vee^2 S^1$,
by the Corollary $\tilde{\chi}(X) = \tilde{\chi}(\vee^2 S^1) = -2$.
 $f_{-1}(X) = 1$ counting $F = \emptyset$,
 $f_0(X) = 5$ counting $F = u, v, w, x, y$,
 $f_1(X) = 6$ counting $F = uv, uw, vw, wx, wy, xy$,
 $f_i(X) = 0$ for $i \ge 2$,

$$\begin{split} \tilde{\chi}(X) &= \sum_{i \ge -1} (-1)^i \tilde{\beta}_i(X) = -\tilde{\beta}_{-1}(X) + \tilde{\beta}_0(X) - \tilde{\beta}_1(X) + \cdots \\ \text{By the previous proposition } \tilde{\beta}_i(\vee^k S^d) = \begin{cases} k & \text{if } i = d, \\ 0 & \text{if } i \neq d. \end{cases} \\ \hline \text{Corollary} \\ \hline \text{We have } \tilde{\chi}(\vee^k S^d) = (-1)^d k. \\ \hline \text{The ith face number of a simplicial complex } \Delta \text{ is } \\ f_i(\Delta) &= \# \text{ of faces of dimension } i = \# \text{ of faces of cardinality } i + 1. \\ \hline \text{Theorem} \\ \tilde{\chi}(\Delta) &= \sum_{i \ge -1} (-1)^i f_i(X) = -f_{-1}(X) + f_0(X) - f_1(X) + \cdots \\ \tilde{\chi}(\Delta) &= \sum_{i \ge -1} (-1)^i f_i(X) = -f_{-1}(X) + f_0(X) - f_1(X) + \cdots \\ \hline \text{Example. For the graph } X \text{ at right: } X \approx \vee^2 S^1, \\ \text{ by the Corollary } \tilde{\chi}(X) &= \tilde{\chi}(\vee^2 S^1) = -2. \\ f_{-1}(X) &= 1 \text{ counting } F = \emptyset, \\ f_0(X) &= 5 \text{ counting } F = u, v, w, x, y, \\ f_1(X) &= 6 \text{ counting } F = uv, uw, vw, wx, wy, xy, \\ f_i(X) &= 0 \text{ for } i \ge 2, \\ \text{ by the Theorem } \tilde{\chi}(X) &= -1 + 5 - 6 = +2: \forall B + \forall B +$$

Outline

Shellability of Simplicial Complexes

The Euler Characteristic

The Order Complex

Lexicographic Shellability

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

If $x, y \in P$ (poset) then an x-y chain of length i in P is a subposet $C : x = x_0 < x_1 < \ldots < x_i = y$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

The order complex of a bounded P is

 $\Delta(P) =$ set of all chains in \overline{P} .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The order complex of a bounded P is

 $\Delta(P) =$ set of all chains in \overline{P} .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A subset of a chain is a chain so $\Delta(P)$ is a simplicial complex.

The order complex of a bounded P is

 $\Delta(P) =$ set of all chains in \overline{P} .

(ロ) (同) (三) (三) (三) (○) (○)

A subset of a chain is a chain so $\Delta(P)$ is a simplicial complex.

Example. If $P = C_4$ then 3 $\overline{C}_4 = 2$

The order complex of a bounded P is

 $\Delta(P) =$ set of all chains in \overline{P} .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

A subset of a chain is a chain so $\Delta(P)$ is a simplicial complex.

Example. If $P = C_4$ then 3 and $\overline{C}_4 = 2$ $\Delta(C_4) = 2$

The order complex of a bounded P is

 $\Delta(P) =$ set of all chains in \overline{P} .

・ロト・ 日本・ モー・ モー・ うくぐ

A subset of a chain is a chain so $\Delta(P)$ is a simplicial complex.

Example. If $P = C_4$ then 3 and $\overrightarrow{C}_4 = 2$ $\Delta(C_4) = 2$

In general $\Delta(C_n) \approx B^{n-2}$, the (n-2)-dimensional ball.

The order complex of a bounded P is

 $\Delta(P) =$ set of all chains in \overline{P} .

A subset of a chain is a chain so $\Delta(P)$ is a simplicial complex.

Example. If
$$P = C_4$$
 then 3 and $\overline{C}_4 = 2$ $\Delta(C_4) = 2$

In general $\Delta(C_n) \approx B^{n-2}$, the (n-2)-dimensional ball.

Example. If $P = B_3$ then $\overline{B}_3 = 12$ 13 23 $\overline{B}_3 = 12$ 3

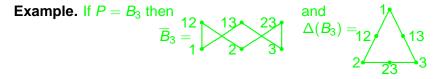
The order complex of a bounded P is

 $\Delta(P) =$ set of all chains in \overline{P} .

A subset of a chain is a chain so $\Delta(P)$ is a simplicial complex.

Example. If $P = C_4$ then $\begin{bmatrix} 3 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ $\Delta(C_4) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

In general $\Delta(C_n) \approx B^{n-2}$, the (n-2)-dimensional ball.



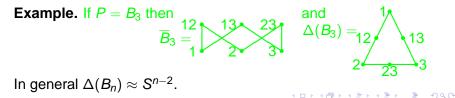
The order complex of a bounded P is

 $\Delta(P) =$ set of all chains in \overline{P} .

A subset of a chain is a chain so $\Delta(P)$ is a simplicial complex.

Example. If $P = C_4$ then $\begin{bmatrix} 3 \\ \hline C_4 = 2 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ \Delta(C_4) = \\ 2 \end{bmatrix}$

In general $\Delta(C_n) \approx B^{n-2}$, the (n-2)-dimensional ball.



Lemma

In the incidence algebra of P

 $(\zeta - \delta)^i(\mathbf{x}, \mathbf{y}) = \# \text{ of } \mathbf{x} - \mathbf{y} \text{ chains of length } i.$

Lemma In the incidence algebra of P

 $(\zeta - \delta)^i(x, y) = \# \text{ of } x - y \text{ chains of length } i.$ **Proof.** We have $(\zeta - \delta)(x, y) = \begin{cases} 1 & \text{if } x < y, \\ 0 & \text{else.} \end{cases}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Lemma In the incidence algebra of P

 $(\zeta - \delta)^i(\mathbf{x}, \mathbf{y}) = \#$ of \mathbf{x} - \mathbf{y} chains of length *i*.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof. We have $(\zeta - \delta)(x, y) = \begin{cases} 1 & \text{if } x < y, \\ 0 & \text{else.} \end{cases}$ So

 $(\zeta - \delta)^i(\mathbf{x}, \mathbf{y})$

Lemma

In the incidence algebra of P

 $(\zeta - \delta)^i(\mathbf{x}, \mathbf{y}) = \#$ of \mathbf{x} - \mathbf{y} chains of length *i*.

Proof. We have $(\zeta - \delta)(x, y) = \begin{cases} 1 & \text{if } x < y, \\ 0 & \text{else.} \end{cases}$ So

$$(\zeta - \delta)^{i}(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{x} = \mathbf{x}_{0}, \mathbf{x}_{1}, \dots, \mathbf{x}_{i} = \mathbf{y}} (\zeta - \delta)(\mathbf{x}_{0}, \mathbf{x}_{1}) \cdots (\zeta - \delta)(\mathbf{x}_{i-1}, \mathbf{x}_{i})$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Lemma

In the incidence algebra of P

 $(\zeta - \delta)^i(\mathbf{x}, \mathbf{y}) = \#$ of \mathbf{x} - \mathbf{y} chains of length *i*.

Proof. We have $(\zeta - \delta)(x, y) = \begin{cases} 1 & \text{if } x < y, \\ 0 & \text{else.} \end{cases}$ So

$$\begin{aligned} (\zeta - \delta)^{i}(\mathbf{x}, \mathbf{y}) &= \sum_{\substack{\mathbf{x} = \mathbf{x}_{0}, \mathbf{x}_{1}, \dots, \mathbf{x}_{i} = \mathbf{y} \\ = \sum_{\substack{\mathbf{x} = \mathbf{x}_{0} < \mathbf{x}_{1} < \dots < \mathbf{x}_{i} = \mathbf{y}}} 1 \\ \end{aligned}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

In the incidence algebra of P

 $(\zeta - \delta)^i(\mathbf{x}, \mathbf{y}) = \#$ of \mathbf{x} - \mathbf{y} chains of length *i*.

Proof. We have $(\zeta - \delta)(x, y) = \begin{cases} 1 & \text{if } x < y, \\ 0 & \text{else.} \end{cases}$ So

$$\begin{aligned} (\zeta - \delta)^{i}(\mathbf{x}, \mathbf{y}) &= \sum_{\mathbf{x} = \mathbf{x}_{0}, \mathbf{x}_{1}, \dots, \mathbf{x}_{i} = \mathbf{y}} (\zeta - \delta)(\mathbf{x}_{0}, \mathbf{x}_{1}) \cdots (\zeta - \delta)(\mathbf{x}_{i-1}, \mathbf{x}_{i}) \\ &= \sum_{\mathbf{x} = \mathbf{x}_{0} < \mathbf{x}_{1} < \dots < \mathbf{x}_{i} = \mathbf{y}} \mathbf{1} = \text{ # of } \mathbf{x} - \mathbf{y} \text{ chains of length } i. \quad \Box \end{aligned}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

In the incidence algebra of P

 $(\zeta - \delta)^i(\mathbf{x}, \mathbf{y}) = \# \text{ of } \mathbf{x} - \mathbf{y} \text{ chains of length } i.$

Proof. We have $(\zeta - \delta)(x, y) = \begin{cases} 1 & \text{if } x < y, \\ 0 & \text{else.} \end{cases}$ So

$$\begin{aligned} (\zeta - \delta)^{i}(\mathbf{x}, \mathbf{y}) &= \sum_{\mathbf{x} = \mathbf{x}_{0}, \mathbf{x}_{1}, \dots, \mathbf{x}_{i} = \mathbf{y}} (\zeta - \delta)(\mathbf{x}_{0}, \mathbf{x}_{1}) \cdots (\zeta - \delta)(\mathbf{x}_{i-1}, \mathbf{x}_{i}) \\ &= \sum_{\mathbf{x} = \mathbf{x}_{0} < \mathbf{x}_{1} < \dots < \mathbf{x}_{i} = \mathbf{y}} \mathbf{1} = \text{ \# of } \mathbf{x} - \mathbf{y} \text{ chains of length } i. \quad \Box \end{aligned}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem

In a bounded poset P with $\hat{0} \neq \hat{1}$: $\mu(P) = \tilde{\chi}(\Delta(P))$.

In the incidence algebra of P

 $(\zeta - \delta)^i(x, y) = \# \text{ of } x - y \text{ chains of length } i.$

Proof. We have $(\zeta - \delta)(x, y) = \begin{cases} 1 & \text{if } x < y, \\ 0 & \text{else.} \end{cases}$ So

$$\begin{aligned} (\zeta - \delta)^{i}(\mathbf{x}, \mathbf{y}) &= \sum_{\mathbf{x} = \mathbf{x}_{0}, \mathbf{x}_{1}, \dots, \mathbf{x}_{i} = \mathbf{y}} (\zeta - \delta)(\mathbf{x}_{0}, \mathbf{x}_{1}) \cdots (\zeta - \delta)(\mathbf{x}_{i-1}, \mathbf{x}_{i}) \\ &= \sum_{\mathbf{x} = \mathbf{x}_{0} < \mathbf{x}_{1} < \dots < \mathbf{x}_{i} = \mathbf{y}} \mathbf{1} = \text{ \# of } \mathbf{x} - \mathbf{y} \text{ chains of length } i. \quad \Box \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

In a bounded poset P with $\hat{0} \neq \hat{1}$: $\mu(P) = \tilde{\chi}(\Delta(P))$.

In the incidence algebra of P

 $(\zeta - \delta)^i(x, y) = \# \text{ of } x - y \text{ chains of length } i.$

Proof. We have $(\zeta - \delta)(x, y) = \begin{cases} 1 & \text{if } x < y, \\ 0 & \text{else.} \end{cases}$ So

$$\begin{aligned} (\zeta - \delta)^{i}(\mathbf{x}, \mathbf{y}) &= \sum_{\mathbf{x} = \mathbf{x}_{0}, \mathbf{x}_{1}, \dots, \mathbf{x}_{i} = \mathbf{y}} (\zeta - \delta)(\mathbf{x}_{0}, \mathbf{x}_{1}) \cdots (\zeta - \delta)(\mathbf{x}_{i-1}, \mathbf{x}_{i}) \\ &= \sum_{\mathbf{x} = \mathbf{x}_{0} < \mathbf{x}_{1} < \dots < \mathbf{x}_{i} = \mathbf{y}} \mathbf{1} = \text{ \# of } \mathbf{x} - \mathbf{y} \text{ chains of length } i. \quad \Box \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

In a bounded poset P with $\hat{0} \neq \hat{1}$: $\mu(P) = \tilde{\chi}(\Delta(P))$.

Proof. Using the definition of μ and the lemma,

 $\mu(P)$

In the incidence algebra of P

 $(\zeta - \delta)^i(x, y) = \# \text{ of } x - y \text{ chains of length } i.$

Proof. We have $(\zeta - \delta)(x, y) = \begin{cases} 1 & \text{if } x < y, \\ 0 & \text{else.} \end{cases}$ So

$$\begin{aligned} (\zeta - \delta)^{i}(\mathbf{x}, \mathbf{y}) &= \sum_{\mathbf{x} = \mathbf{x}_{0}, \mathbf{x}_{1}, \dots, \mathbf{x}_{i} = \mathbf{y}} (\zeta - \delta)(\mathbf{x}_{0}, \mathbf{x}_{1}) \cdots (\zeta - \delta)(\mathbf{x}_{i-1}, \mathbf{x}_{i}) \\ &= \sum_{\mathbf{x} = \mathbf{x}_{0} < \mathbf{x}_{1} < \dots < \mathbf{x}_{i} = \mathbf{y}} \mathbf{1} = \text{ \# of } \mathbf{x} - \mathbf{y} \text{ chains of length } i. \quad \Box \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

In a bounded poset P with $\hat{0} \neq \hat{1}$: $\mu(P) = \tilde{\chi}(\Delta(P))$.

$$\mu(P) = \zeta^{-1}(P)$$

In the incidence algebra of P

 $(\zeta - \delta)^i(x, y) = \# \text{ of } x - y \text{ chains of length } i.$

Proof. We have $(\zeta - \delta)(x, y) = \begin{cases} 1 & \text{if } x < y, \\ 0 & \text{else.} \end{cases}$ So

$$\begin{aligned} (\zeta - \delta)^{i}(\mathbf{x}, \mathbf{y}) &= \sum_{\mathbf{x} = \mathbf{x}_{0}, \mathbf{x}_{1}, \dots, \mathbf{x}_{i} = \mathbf{y}} (\zeta - \delta)(\mathbf{x}_{0}, \mathbf{x}_{1}) \cdots (\zeta - \delta)(\mathbf{x}_{i-1}, \mathbf{x}_{i}) \\ &= \sum_{\mathbf{x} = \mathbf{x}_{0} < \mathbf{x}_{1} < \dots < \mathbf{x}_{i} = \mathbf{y}} \mathbf{1} = \text{ \# of } \mathbf{x} - \mathbf{y} \text{ chains of length } i. \quad \Box \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

In a bounded poset P with $\hat{0} \neq \hat{1}$: $\mu(P) = \tilde{\chi}(\Delta(P))$.

$$\mu(P) = \zeta^{-1}(P) = (\delta + (\zeta - \delta))^{-1}(P)$$

In the incidence algebra of P

 $(\zeta - \delta)^i(x, y) = \# \text{ of } x - y \text{ chains of length } i.$

Proof. We have $(\zeta - \delta)(x, y) = \begin{cases} 1 & \text{if } x < y, \\ 0 & \text{else.} \end{cases}$ So

$$\begin{aligned} (\zeta - \delta)^{i}(\mathbf{x}, \mathbf{y}) &= \sum_{\mathbf{x} = \mathbf{x}_{0}, \mathbf{x}_{1}, \dots, \mathbf{x}_{i} = \mathbf{y}} (\zeta - \delta)(\mathbf{x}_{0}, \mathbf{x}_{1}) \cdots (\zeta - \delta)(\mathbf{x}_{i-1}, \mathbf{x}_{i}) \\ &= \sum_{\mathbf{x} = \mathbf{x}_{0} < \mathbf{x}_{1} < \dots < \mathbf{x}_{i} = \mathbf{y}} \mathbf{1} = \text{ \# of } \mathbf{x} - \mathbf{y} \text{ chains of length } i. \quad \Box \end{aligned}$$

Theorem

In a bounded poset P with $\hat{0} \neq \hat{1}$: $\mu(P) = \tilde{\chi}(\Delta(P))$.

Proof. Using the definition of μ and the lemma,

$$\mu(P) = \zeta^{-1}(P) = (\delta + (\zeta - \delta))^{-1}(P) = \sum_{i \ge 0} (-1)^i (\zeta - \delta)^i (P)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In the incidence algebra of P

 $(\zeta - \delta)^i(x, y) = \# \text{ of } x - y \text{ chains of length } i.$

Proof. We have $(\zeta - \delta)(x, y) = \begin{cases} 1 & \text{if } x < y, \\ 0 & \text{else.} \end{cases}$ So

$$\begin{aligned} (\zeta - \delta)^{i}(\mathbf{x}, \mathbf{y}) &= \sum_{\mathbf{x} = \mathbf{x}_{0}, \mathbf{x}_{1}, \dots, \mathbf{x}_{i} = \mathbf{y}} (\zeta - \delta)(\mathbf{x}_{0}, \mathbf{x}_{1}) \cdots (\zeta - \delta)(\mathbf{x}_{i-1}, \mathbf{x}_{i}) \\ &= \sum_{\mathbf{x} = \mathbf{x}_{0} < \mathbf{x}_{1} < \dots < \mathbf{x}_{i} = \mathbf{y}} \mathbf{1} = \text{ \# of } \mathbf{x} - \mathbf{y} \text{ chains of length } i. \quad \Box \end{aligned}$$

Theorem

In a bounded poset P with $\hat{0} \neq \hat{1}$: $\mu(P) = \tilde{\chi}(\Delta(P))$.

$$\mu(P) = \zeta^{-1}(P) = (\delta + (\zeta - \delta))^{-1}(P) = \sum_{i \ge 0} (-1)^i (\zeta - \delta)^i (P)$$

= $\sum_{i \ge 1} (-1)^i (\text{# of } \hat{0} - \hat{1} \text{ chains of length } i \text{ in } P)$

In the incidence algebra of P

 $(\zeta - \delta)^i(x, y) = \# \text{ of } x - y \text{ chains of length } i.$

Proof. We have $(\zeta - \delta)(x, y) = \begin{cases} 1 & \text{if } x < y, \\ 0 & \text{else.} \end{cases}$ So

$$\begin{aligned} (\zeta - \delta)^{i}(\mathbf{x}, \mathbf{y}) &= \sum_{\mathbf{x} = \mathbf{x}_{0}, \mathbf{x}_{1}, \dots, \mathbf{x}_{i} = \mathbf{y}} (\zeta - \delta)(\mathbf{x}_{0}, \mathbf{x}_{1}) \cdots (\zeta - \delta)(\mathbf{x}_{i-1}, \mathbf{x}_{i}) \\ &= \sum_{\mathbf{x} = \mathbf{x}_{0} < \mathbf{x}_{1} < \dots < \mathbf{x}_{i} = \mathbf{y}} \mathbf{1} = \text{ \# of } \mathbf{x} - \mathbf{y} \text{ chains of length } i. \quad \Box \end{aligned}$$

Theorem

In a bounded poset P with $\hat{0} \neq \hat{1}$: $\mu(P) = \tilde{\chi}(\Delta(P))$.

$$\mu(P) = \zeta^{-1}(P) = (\delta + (\zeta - \delta))^{-1}(P) = \sum_{i \ge 0} (-1)^i (\zeta - \delta)^i (P)$$
$$= \sum_{i \ge 1} (-1)^i (\text{\# of } \hat{0} - \hat{1} \text{ chains of length } i \text{ in } P)$$
$$= \sum_{i \ge 1} (-1)^{i-2} (\text{\# of chains of length } i - 2 \text{ in } \overline{P})$$

In the incidence algebra of P

 $(\zeta - \delta)^i(x, y) = \# \text{ of } x - y \text{ chains of length } i.$

Proof. We have $(\zeta - \delta)(x, y) = \begin{cases} 1 & \text{if } x < y, \\ 0 & \text{else.} \end{cases}$ So

$$\begin{aligned} (\zeta - \delta)^{i}(\mathbf{x}, \mathbf{y}) &= \sum_{\mathbf{x} = \mathbf{x}_{0}, \mathbf{x}_{1}, \dots, \mathbf{x}_{i} = \mathbf{y}} (\zeta - \delta)(\mathbf{x}_{0}, \mathbf{x}_{1}) \cdots (\zeta - \delta)(\mathbf{x}_{i-1}, \mathbf{x}_{i}) \\ &= \sum_{\mathbf{x} = \mathbf{x}_{0} < \mathbf{x}_{1} < \dots < \mathbf{x}_{i} = \mathbf{y}} \mathbf{1} = \text{ \# of } \mathbf{x} - \mathbf{y} \text{ chains of length } i. \quad \Box \end{aligned}$$

Theorem

In a bounded poset P with $\hat{0} \neq \hat{1}$: $\mu(P) = \tilde{\chi}(\Delta(P))$.

$$\mu(P) = \zeta^{-1}(P) = (\delta + (\zeta - \delta))^{-1}(P) = \sum_{i \ge 0} (-1)^i (\zeta - \delta)^i (P)$$

= $\sum_{i \ge 1} (-1)^i (\text{\# of } \hat{0} - \hat{1} \text{ chains of length } i \text{ in } P)$
= $\sum_{i \ge 1} (-1)^{i-2} (\text{\# of chains of length } i - 2 \text{ in } \overline{P})$
= $\sum_{j \ge -1} (-1)^j f_j(\Delta(P))$

In the incidence algebra of P

 $(\zeta - \delta)^i(x, y) = \# \text{ of } x - y \text{ chains of length } i.$

Proof. We have $(\zeta - \delta)(x, y) = \begin{cases} 1 & \text{if } x < y, \\ 0 & \text{else.} \end{cases}$ So

$$\begin{aligned} (\zeta - \delta)^{i}(\mathbf{x}, \mathbf{y}) &= \sum_{\mathbf{x} = \mathbf{x}_{0}, \mathbf{x}_{1}, \dots, \mathbf{x}_{i} = \mathbf{y}} (\zeta - \delta)(\mathbf{x}_{0}, \mathbf{x}_{1}) \cdots (\zeta - \delta)(\mathbf{x}_{i-1}, \mathbf{x}_{i}) \\ &= \sum_{\mathbf{x} = \mathbf{x}_{0} < \mathbf{x}_{1} < \dots < \mathbf{x}_{i} = \mathbf{y}} \mathbf{1} = \text{ \# of } \mathbf{x} - \mathbf{y} \text{ chains of length } i. \quad \Box \end{aligned}$$

Theorem

In a bounded poset P with $\hat{0} \neq \hat{1}$: $\mu(P) = \tilde{\chi}(\Delta(P))$.

$$\mu(P) = \zeta^{-1}(P) = (\delta + (\zeta - \delta))^{-1}(P) = \sum_{i \ge 0} (-1)^i (\zeta - \delta)^i (P)$$

= $\sum_{i \ge 1} (-1)^i (\# \text{ of } \hat{0} - \hat{1} \text{ chains of length } i \text{ in } P)$
= $\sum_{i \ge 1} (-1)^{i-2} (\# \text{ of chains of length } i - 2 \text{ in } \overline{P})$
= $\sum_{j \ge -1} (-1)^j f_j(\Delta(P)) = \tilde{\chi}(\Delta(P)).$

Outline

Shellability of Simplicial Complexes

The Euler Characteristic

The Order Complex

Lexicographic Shellability

A saturated x-y chain has the form $x = x_0 \triangleleft x_1 \triangleleft \ldots \triangleleft x_i = y$.

(ロ) (型) (E) (E) (E) (O)()

(ロ) (同) (三) (三) (三) (○) (○)

 $\operatorname{rk} C_n = n$,

 $\operatorname{rk} C_n = n, \operatorname{rk} B_n = n,$

(ロ) (同) (三) (三) (三) (○) (○)

$$\operatorname{rk} C_n = n, \ \operatorname{rk} B_n = n, \ \operatorname{rk} D_n = \sum_i m_i \quad (n = \prod_i p_i^{m_i}),$$

$$\operatorname{rk} C_n = n, \ \operatorname{rk} B_n = n, \ \operatorname{rk} D_n = \sum_i m_i \quad (n = \prod_i p_i^{m_i}), \ \operatorname{rk} \Pi_n = n-1.$$

(ロ) (同) (三) (三) (三) (○) (○)

 $\operatorname{rk} C_n = n, \ \operatorname{rk} B_n = n, \ \operatorname{rk} D_n = \sum_i m_i \quad (n = \prod_i p_i^{m_i}), \ \operatorname{rk} \Pi_n = n-1.$

Let E(P) be the edge set of the Hasse diagram of P.

 $\operatorname{rk} \boldsymbol{C}_n = \boldsymbol{n}, \ \operatorname{rk} \boldsymbol{B}_n = \boldsymbol{n}, \ \operatorname{rk} \boldsymbol{D}_n = \sum \boldsymbol{m}_i \quad (\boldsymbol{n} = \prod \boldsymbol{p}_i^{\boldsymbol{m}_i}), \ \operatorname{rk} \boldsymbol{\Pi}_n = \boldsymbol{n} - 1.$

Let E(P) be the edge set of the Hasse diagram of P. A labeling $\ell : E(P) \to \mathbb{Q}$ induces a labeling of saturated chains by

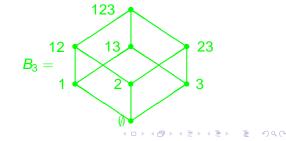
$$\ell(\mathbf{x}_0 \lhd \mathbf{x}_1 \lhd \ldots \lhd \mathbf{x}_i) = (\ell(\mathbf{x}_0 \lhd \mathbf{x}_1), \ldots, \ell(\mathbf{x}_{i-1} \lhd \mathbf{x}_i)).$$

 $\operatorname{rk} \boldsymbol{C}_n = \boldsymbol{n}, \ \operatorname{rk} \boldsymbol{B}_n = \boldsymbol{n}, \ \operatorname{rk} \boldsymbol{D}_n = \sum \boldsymbol{m}_i \quad (\boldsymbol{n} = \prod \boldsymbol{p}_i^{\boldsymbol{m}_i}), \ \operatorname{rk} \boldsymbol{\Pi}_n = \boldsymbol{n} - 1.$

Let E(P) be the edge set of the Hasse diagram of P. A labeling $\ell : E(P) \to \mathbb{Q}$ induces a labeling of saturated chains by

$$\ell(\mathbf{x}_0 \lhd \mathbf{x}_1 \lhd \ldots \lhd \mathbf{x}_i) = (\ell(\mathbf{x}_0 \lhd \mathbf{x}_1), \ldots, \ell(\mathbf{x}_{i-1} \lhd \mathbf{x}_i)).$$

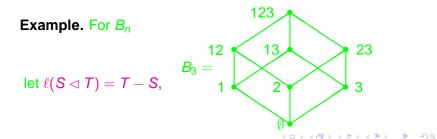
Example. For B_n



 $\operatorname{rk} C_n = n, \ \operatorname{rk} B_n = n, \ \operatorname{rk} D_n = \sum_i m_i \quad (n = \prod_i p_i^{m_i}), \ \operatorname{rk} \Pi_n = n-1.$

Let E(P) be the edge set of the Hasse diagram of P. A labeling $\ell : E(P) \to \mathbb{Q}$ induces a labeling of saturated chains by

$$\ell(\mathbf{x}_0 \lhd \mathbf{x}_1 \lhd \ldots \lhd \mathbf{x}_i) = (\ell(\mathbf{x}_0 \lhd \mathbf{x}_1), \ldots, \ell(\mathbf{x}_{i-1} \lhd \mathbf{x}_i)).$$



 $\operatorname{rk} C_n = n$, $\operatorname{rk} B_n = n$, $\operatorname{rk} D_n = \sum_i m_i$ $(n = \prod_i p_i^{m_i})$, $\operatorname{rk} \Pi_n = n-1$.

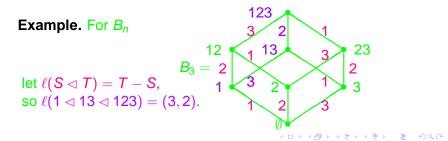
Let E(P) be the edge set of the Hasse diagram of P. A labeling $\ell : E(P) \to \mathbb{Q}$ induces a labeling of saturated chains by

$$\ell(\mathbf{x}_0 \lhd \mathbf{x}_1 \lhd \ldots \lhd \mathbf{x}_i) = (\ell(\mathbf{x}_0 \lhd \mathbf{x}_1), \ldots, \ell(\mathbf{x}_{i-1} \lhd \mathbf{x}_i)).$$

$$\operatorname{rk} C_n = n, \ \operatorname{rk} B_n = n, \ \operatorname{rk} D_n = \sum_i m_i \quad (n = \prod_i p_i^{m_i}), \ \operatorname{rk} \Pi_n = n-1.$$

Let E(P) be the edge set of the Hasse diagram of P. A labeling $\ell : E(P) \rightarrow \mathbb{Q}$ induces a labeling of saturated chains by

$$\ell(\mathbf{x}_0 \lhd \mathbf{x}_1 \lhd \ldots \lhd \mathbf{x}_i) = (\ell(\mathbf{x}_0 \lhd \mathbf{x}_1), \ldots, \ell(\mathbf{x}_{i-1} \lhd \mathbf{x}_i)).$$



Say saturated chain C has a property if $\ell(C)$ has that property.

(ロ) (同) (三) (三) (三) (○) (○)

1. there is a unique weakly increasing x-y chain C_{xy} ,

- 1. there is a unique weakly increasing x-y chain C_{xy} ,
- 2. C_{xy} is lexicographically least among saturated x-y chains.

(ロ) (同) (三) (三) (三) (○) (○)

1. there is a unique weakly increasing x-y chain C_{xy} ,

2. C_{xy} is lexicographically least among saturated x-y chains. All four of our example posets have EL-labelings. We will give the labeling and verify the two conditions for the interval $[\hat{0}, \hat{1}]$.

(ロ) (同) (三) (三) (三) (○) (○)

1. there is a unique weakly increasing x-y chain C_{xy} ,

2. C_{xy} is lexicographically least among saturated x-y chains. All four of our example posets have EL-labelings. We will give the labeling and verify the two conditions for the interval $[\hat{0}, \hat{1}]$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1. For C_n let $\ell(i - 1 \triangleleft i) = i$.

1. there is a unique weakly increasing x-y chain C_{xy} ,

2. C_{xy} is lexicographically least among saturated x-y chains. All four of our example posets have EL-labelings. We will give the labeling and verify the two conditions for the interval $[\hat{0}, \hat{1}]$.

1. For C_n let $\ell(i - 1 \triangleleft i) = i$. Then there is only one saturated chain and $\ell(0 \triangleleft 1 \triangleleft \ldots \triangleleft n) = (1, 2, \ldots, n)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1. there is a unique weakly increasing x-y chain C_{xy} ,

2. C_{xy} is lexicographically least among saturated x-y chains. All four of our example posets have EL-labelings. We will give the labeling and verify the two conditions for the interval $[\hat{0}, \hat{1}]$.

1. For C_n let $\ell(i - 1 \triangleleft i) = i$. Then there is only one saturated chain and $\ell(0 \triangleleft 1 \triangleleft \ldots \triangleleft n) = (1, 2, \ldots, n)$

2. For B_n let $\ell(S \triangleleft T) = T - S$.

1. there is a unique weakly increasing x-y chain C_{xy} ,

2. C_{xy} is lexicographically least among saturated x-y chains. All four of our example posets have EL-labelings. We will give the labeling and verify the two conditions for the interval $[\hat{0}, \hat{1}]$.

1. For C_n let $\ell(i - 1 \triangleleft i) = i$. Then there is only one saturated chain and $\ell(0 \triangleleft 1 \triangleleft \ldots \triangleleft n) = (1, 2, \ldots, n)$

2. For $B_n \text{ let } \ell(S \triangleleft T) = T - S$. There is a bijection between saturated $\hat{0}-\hat{1}$ chains and permutations of $\{1, \ldots, n\}$ given by

$$(x_1, x_2, \ldots, x_n) = \ell(\hat{0} \lhd x_1 \lhd x_1 x_2 \lhd \ldots \lhd \hat{1}).$$

(日) (日) (日) (日) (日) (日) (日)

1. there is a unique weakly increasing x-y chain C_{xy} ,

2. C_{xy} is lexicographically least among saturated x-y chains. All four of our example posets have EL-labelings. We will give the labeling and verify the two conditions for the interval $[\hat{0}, \hat{1}]$.

1. For C_n let $\ell(i - 1 \triangleleft i) = i$. Then there is only one saturated chain and $\ell(0 \triangleleft 1 \triangleleft \ldots \triangleleft n) = (1, 2, \ldots, n)$

2. For $B_n \text{ let } \ell(S \triangleleft T) = T - S$. There is a bijection between saturated $\hat{0}-\hat{1}$ chains and permutations of $\{1, \ldots, n\}$ given by

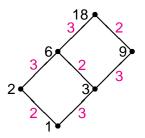
$$(x_1, x_2, \ldots, x_n) = \ell(\hat{0} \lhd x_1 \lhd x_1 x_2 \lhd \ldots \lhd \hat{1}).$$

There is a unique weakly increasing permutation, (1, 2, ..., n), and it is lexicographically smaller than any other permutation.

3. For D_n let $\ell(c \triangleleft d) = d/c$.

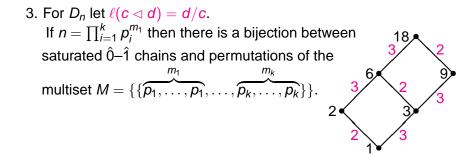
◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

3. For D_n let $\ell(c \triangleleft d) = d/c$.



ヘロト 人間 とくほとう ほとう

æ



・ロト ・個 ト ・ ヨト ・ ヨト … ヨ

3. For D_n let $\ell(c \triangleleft d) = d/c$. If $n = \prod_{i=1}^{k} p_i^{m_1}$ then there is a bijection between saturated $\hat{0}-\hat{1}$ chains and permutations of the multiset $M = \{\{\overbrace{p_1, \ldots, p_1}^{m_1}, \ldots, \overbrace{p_k, \ldots, p_k}^{m_k}\}\}$. There is a unique weakly increasing permutation of M and it is lexicographically smaller than any other permutation.

・ロト ・聞ト ・ヨト ・ヨト 三日

3. For D_n let $\ell(c \triangleleft d) = d/c$. If $n = \prod_{i=1}^k p_i^{m_1}$ then there is a bijection between saturated $\hat{0}-\hat{1}$ chains and permutations of the multiset $M = \{\{\overline{p_1, \dots, p_1}, \dots, \overline{p_k, \dots, p_k}\}\}$. There is a unique weakly increasing permutation of M and it is lexicographically smaller than any other permutation.

4. In Π_n , if $\pi = B_1 / \dots / B_k$ and merging B_i with B_j forms σ then

 $\ell(\pi \lhd \sigma) = \max\{\min B_i, \min B_j\}$

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

3. For D_n let $\ell(c \triangleleft d) = d/c$. If $n = \prod_{i=1}^{k} p_i^{m_1}$ then there is a bijection between 18 saturated 0-1 chains and permutations of the multiset $M = \{\{\overline{p_1, \ldots, p_1}, \ldots, \overline{p_k, \ldots, p_k}\}\}$. There is a unique weakly increasing permutation of M and it is lexicographically smaller than any other permutation. 4. In Π_n , if $\pi = B_1 / \dots / B_k$ and merging B_i with B_i forms σ then $\ell(\pi \lhd \sigma) = \max\{\min B_i, \min B_i\}$

イロト 不良 とくほ とくほう 二日

3. For D_n let $\ell(c \triangleleft d) = d/c$. If $n = \prod_{i=1}^{k} p_i^{m_1}$ then there is a bijection between 18 saturated $\hat{0}-\hat{1}$ chains and permutations of the multiset $M = \{\{\overline{p_1, \ldots, p_1}, \ldots, \overline{p_k, \ldots, p_k}\}\}$. There is a unique weakly increasing permutation of M and it is lexicographically smaller than any other permutation. 4. In Π_n , if $\pi = B_1 / \dots / B_k$ and merging B_i with B_i forms σ then $\ell(\pi \lhd \sigma) = \max\{\min B_i, \min B_i\}$ If C is a saturated $\hat{0}-\hat{1}$ chain then $\ell(C)$ is a permutation of $\{2, 3, \ldots, n\}$: 13/212/3

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

3. For D_n let $\ell(c \triangleleft d) = d/c$. If $n = \prod_{i=1}^{k} p_i^{m_1}$ then there is a bijection between 18 saturated $\hat{0}-\hat{1}$ chains and permutations of the multiset $M = \{\{\overline{p_1, \ldots, p_1}, \ldots, \overline{p_k, \ldots, p_k}\}\}$. There is a unique weakly increasing permutation of M and it is lexicographically smaller than any other permutation. 4. In Π_n , if $\pi = B_1 / \dots / B_k$ and merging B_i with B_i forms σ then $\ell(\pi \lhd \sigma) = \max\{\min B_i, \min B_i\}$ If C is a saturated $\hat{0}-\hat{1}$ chain then $\ell(C)$ is a permutation of $\{2, 3, \ldots, n\}$: 12/3 13/2For all π, σ we have $2 \leq \ell(\pi \lhd \sigma) < n$.

3. For D_n let $\ell(c \triangleleft d) = d/c$. If $n = \prod_{i=1}^{k} p_i^{m_1}$ then there is a bijection between 18 saturated $\hat{0}-\hat{1}$ chains and permutations of the multiset $M = \{\{\overline{p_1, \ldots, p_1}, \ldots, \overline{p_k, \ldots, p_k}\}\}$. There is a unique weakly increasing 2 permutation of M and it is lexicographically smaller than any other permutation. 4. In Π_n , if $\pi = B_1 / \dots / B_k$ and merging B_i with B_i forms σ then $\ell(\pi \lhd \sigma) = \max\{\min B_i, \min B_i\}$ If C is a saturated $\hat{0}-\hat{1}$ chain then $\ell(C)$ is a permutation of $\{2, 3, \ldots, n\}$: 12/3 13/2For all π, σ we have $2 \leq \ell(\pi \lhd \sigma) \leq n$. Also $\#\ell(C) = n - 1$.

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

3. For D_n let $\ell(c \triangleleft d) = d/c$. If $n = \prod_{i=1}^{k} p_i^{m_1}$ then there is a bijection between 18 saturated 0-1 chains and permutations of the multiset $M = \{\{\overline{p_1, \ldots, p_1}, \ldots, \overline{p_k, \ldots, p_k}\}\}$. There is a unique weakly increasing permutation of M and it is lexicographically smaller than any other permutation. 4. In Π_n , if $\pi = B_1 / \dots / B_k$ and merging B_i with B_i forms σ then $\ell(\pi \lhd \sigma) = \max\{\min B_i, \min B_i\}$ If C is a saturated $\hat{0}-\hat{1}$ chain then $\ell(C)$ is a permutation of $\{2, 3, \ldots, n\}$: 13/212/3For all π, σ we have $2 \leq \ell(\pi \lhd \sigma) \leq n$. Also $\#\ell(C) = n - 1$. And if *m* appears as a label, it does so at most once since after merging it is no longer a min.

3. For D_n let $\ell(c \triangleleft d) = d/c$. If $n = \prod_{i=1}^{k} p_i^{m_1}$ then there is a bijection between saturated $\hat{0}-\hat{1}$ chains and permutations of the multiset $M = \{\{\overline{p_1, \ldots, p_1}, \ldots, \overline{p_k, \ldots, p_k}\}\}$. There is a unique weakly increasing 2 permutation of M and it is lexicographically smaller than any other permutation. 4. In Π_n , if $\pi = B_1 / \dots / B_k$ and merging B_i with B_i forms σ then $\ell(\pi \lhd \sigma) = \max\{\min B_i, \min B_i\}$ If C is a saturated $\hat{0}-\hat{1}$ chain then $\ell(C)$ is a permutation of $\{2, 3, \ldots, n\}$: 13/212/3For all π, σ we have $2 \leq \ell(\pi \lhd \sigma) \leq n$. Also $\#\ell(C) = n - 1$. And if *m* appears as a label, it does so at most once since after merging it is no longer a min. The permutation (2, ..., n) only occurs once, namely as $\ell(\hat{0} \triangleleft 12/3/\ldots/n \triangleleft 123/4/\ldots/n \triangleleft \ldots \triangleleft \hat{1})$

Theorem (Björner, 1980) Let P be a graded poset. If P has an EL-labelling then $\Delta(P)$ is shellable.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Let P be a graded poset. If P has an EL-labelling then $\Delta(P)$ is shellable. In fact, if F_1, \ldots, F_k is a list of the saturated $\hat{0} - \hat{1}$ chains in lexicographic order, then $\overline{F}_1, \ldots, \overline{F}_k$ is a shelling of $\Delta(P)$.

Let P be a graded poset. If P has an EL-labelling then $\Delta(P)$ is shellable. In fact, if F_1, \ldots, F_k is a list of the saturated $\hat{0} - \hat{1}$ chains in lexicographic order, then $\overline{F}_1, \ldots, \overline{F}_k$ is a shelling of $\Delta(P)$. Furthermore

 $\mu(P) = (-1)^{\operatorname{rk} P} (\# \text{ of strictly decreasing } F_j).$ (1)

(日) (日) (日) (日) (日) (日) (日)

Let P be a graded poset. If P has an EL-labelling then $\Delta(P)$ is shellable. In fact, if F_1, \ldots, F_k is a list of the saturated $\hat{0} - \hat{1}$ chains in lexicographic order, then $\overline{F}_1, \ldots, \overline{F}_k$ is a shelling of $\Delta(P)$. Furthermore

 $\mu(P) = (-1)^{\operatorname{rk} P} (\# \text{ of strictly decreasing } F_j).$ (1)

(日) (日) (日) (日) (日) (日) (日)

Proof of (1).

Let P be a graded poset. If P has an EL-labelling then $\Delta(P)$ is shellable. In fact, if F_1, \ldots, F_k is a list of the saturated $\hat{0} - \hat{1}$ chains in lexicographic order, then $\overline{F}_1, \ldots, \overline{F}_k$ is a shelling of $\Delta(P)$. Furthermore

 $\mu(P) = (-1)^{\operatorname{rk} P} (\# \text{ of strictly decreasing } F_j).$ (1)

(日) (日) (日) (日) (日) (日) (日)

Proof of (1). Using the first half of the theorem

 $\mu(P)$

Let P be a graded poset. If P has an EL-labelling then $\Delta(P)$ is shellable. In fact, if F_1, \ldots, F_k is a list of the saturated $\hat{0} - \hat{1}$ chains in lexicographic order, then $\overline{F}_1, \ldots, \overline{F}_k$ is a shelling of $\Delta(P)$. Furthermore

 $\mu(P) = (-1)^{\operatorname{rk} P} (\# \text{ of strictly decreasing } F_j).$ (1)

Proof of (1). Using the first half of the theorem

 $\mu(P) = \tilde{\chi}(\Delta(P))$

Let P be a graded poset. If P has an EL-labelling then $\Delta(P)$ is shellable. In fact, if F_1, \ldots, F_k is a list of the saturated $\hat{0} - \hat{1}$ chains in lexicographic order, then $\overline{F}_1, \ldots, \overline{F}_k$ is a shelling of $\Delta(P)$. Furthermore

 $\mu(P) = (-1)^{\operatorname{rk} P} (\# \text{ of strictly decreasing } F_j).$ (1)

(日) (日) (日) (日) (日) (日) (日)

Proof of (1). Using the first half of the theorem

$$\mu(P) = \tilde{\chi}(\Delta(P)) = (-1)^{\dim \Delta(P)} (\# \text{ of } \overline{F}_j \text{ with } r(\overline{F}_j) = \overline{F}_j).$$

Let P be a graded poset. If P has an EL-labelling then $\Delta(P)$ is shellable. In fact, if F_1, \ldots, F_k is a list of the saturated $\hat{0} - \hat{1}$ chains in lexicographic order, then $\overline{F}_1, \ldots, \overline{F}_k$ is a shelling of $\Delta(P)$. Furthermore

 $\mu(P) = (-1)^{\operatorname{rk} P} (\# \text{ of strictly decreasing } F_j).$ (1)

Proof of (1). Using the first half of the theorem

$$\mu(P) = \tilde{\chi}(\Delta(P)) = (-1)^{\dim \Delta(P)} (\# \text{ of } \overline{F}_j \text{ with } r(\overline{F}_j) = \overline{F}_j).$$

The power of -1 is as desired since dim $\Delta(P) = \operatorname{rk}(P) - 2$.

Let P be a graded poset. If P has an EL-labelling then $\Delta(P)$ is shellable. In fact, if F_1, \ldots, F_k is a list of the saturated $\hat{0} - \hat{1}$ chains in lexicographic order, then $\overline{F}_1, \ldots, \overline{F}_k$ is a shelling of $\Delta(P)$. Furthermore

 $\mu(P) = (-1)^{\operatorname{rk} P} (\# \text{ of strictly decreasing } F_j).$ (1)

Proof of (1). Using the first half of the theorem

$$\mu(P) = \tilde{\chi}(\Delta(P)) = (-1)^{\dim \Delta(P)} (\# \text{ of } \overline{F}_j \text{ with } r(\overline{F}_j) = \overline{F}_j).$$

The power of -1 is as desired since dim $\Delta(P) = \operatorname{rk}(P) - 2$. So it suffices to show that $\ell(F_i)$ is strictly decreasing iff $r(\overline{F}_i) = \overline{F}_i$.

Let P be a graded poset. If P has an EL-labelling then $\Delta(P)$ is shellable. In fact, if F_1, \ldots, F_k is a list of the saturated $\hat{0} - \hat{1}$ chains in lexicographic order, then $\overline{F}_1, \ldots, \overline{F}_k$ is a shelling of $\Delta(P)$. Furthermore

 $\mu(P) = (-1)^{\operatorname{rk} P} (\# \text{ of strictly decreasing } F_j).$ (1)

Proof of (1). Using the first half of the theorem

$$\mu(P) = \tilde{\chi}(\Delta(P)) = (-1)^{\dim \Delta(P)} (\# \text{ of } \overline{F}_j \text{ with } r(\overline{F}_j) = \overline{F}_j).$$

The power of -1 is as desired since dim $\Delta(P) = \operatorname{rk}(P) - 2$. So it suffices to show that $\ell(F_j)$ is strictly decreasing iff $r(\overline{F}_j) = \overline{F}_j$. " \Longrightarrow " (" \Leftarrow " is similar)

Let P be a graded poset. If P has an EL-labelling then $\Delta(P)$ is shellable. In fact, if F_1, \ldots, F_k is a list of the saturated $\hat{0} - \hat{1}$ chains in lexicographic order, then $\overline{F}_1, \ldots, \overline{F}_k$ is a shelling of $\Delta(P)$. Furthermore

 $\mu(P) = (-1)^{\operatorname{rk} P} (\# \text{ of strictly decreasing } F_j).$ (1)

Proof of (1). Using the first half of the theorem

$$\mu(P) = \tilde{\chi}(\Delta(P)) = (-1)^{\dim \Delta(P)} (\# \text{ of } \overline{F}_j \text{ with } r(\overline{F}_j) = \overline{F}_j).$$

The power of -1 is as desired since dim $\Delta(P) = \operatorname{rk}(P) - 2$. So it suffices to show that $\ell(F_j)$ is strictly decreasing iff $r(\overline{F}_j) = \overline{F}_j$. " \Longrightarrow " (" \Leftarrow " is similar) Suppose $\ell(F_j) = (x_0, \ldots, x_n)$ is strictly decreasing.

Let P be a graded poset. If P has an EL-labelling then $\Delta(P)$ is shellable. In fact, if F_1, \ldots, F_k is a list of the saturated $\hat{0} - \hat{1}$ chains in lexicographic order, then $\overline{F}_1, \ldots, \overline{F}_k$ is a shelling of $\Delta(P)$. Furthermore

 $\mu(P) = (-1)^{\operatorname{rk} P} (\# \text{ of strictly decreasing } F_j).$ (1)

Proof of (1). Using the first half of the theorem

$$\mu(P) = \tilde{\chi}(\Delta(P)) = (-1)^{\dim \Delta(P)} (\# \text{ of } \overline{F}_j \text{ with } r(\overline{F}_j) = \overline{F}_j).$$

The power of -1 is as desired since dim $\Delta(P) = \operatorname{rk}(P) - 2$. So it suffices to show that $\ell(F_j)$ is strictly decreasing iff $r(\overline{F}_j) = \overline{F}_j$. " \Longrightarrow " (" \Leftarrow " is similar) Suppose $\ell(F_j) = (x_0, \ldots, x_n)$ is strictly decreasing. We must show that given any $x_r \in \overline{F}_j$ there is F_i with i < j and $F_i \cap F_j = F_j - \{x_r\}$.

Let P be a graded poset. If P has an EL-labelling then $\Delta(P)$ is shellable. In fact, if F_1, \ldots, F_k is a list of the saturated $\hat{0} - \hat{1}$ chains in lexicographic order, then $\overline{F}_1, \ldots, \overline{F}_k$ is a shelling of $\Delta(P)$. Furthermore

 $\mu(P) = (-1)^{\operatorname{rk} P} (\# \text{ of strictly decreasing } F_j).$ (1)

Proof of (1). Using the first half of the theorem

$$\mu(P) = \tilde{\chi}(\Delta(P)) = (-1)^{\dim \Delta(P)} (\# \text{ of } \overline{F}_j \text{ with } r(\overline{F}_j) = \overline{F}_j).$$

The power of -1 is as desired since dim $\Delta(P) = \operatorname{rk}(P) - 2$. So it suffices to show that $\ell(F_j)$ is strictly decreasing iff $r(\overline{F}_j) = \overline{F}_j$. " \Longrightarrow " (" \Leftarrow " is similar) Suppose $\ell(F_j) = (x_0, \ldots, x_n)$ is strictly decreasing. We must show that given any $x_r \in \overline{F}_j$ there is F_i with i < j and $F_i \cap F_j = F_j - \{x_r\}$. Now $x_{r-1} \triangleleft x_r \triangleleft x_{r+1}$ is strictly decreasing.

Let P be a graded poset. If P has an EL-labelling then $\Delta(P)$ is shellable. In fact, if F_1, \ldots, F_k is a list of the saturated $\hat{0} - \hat{1}$ chains in lexicographic order, then $\overline{F}_1, \ldots, \overline{F}_k$ is a shelling of $\Delta(P)$. Furthermore

 $\mu(P) = (-1)^{\operatorname{rk} P} (\# \text{ of strictly decreasing } F_j).$ (1)

Proof of (1). Using the first half of the theorem

$$\mu(P) = \tilde{\chi}(\Delta(P)) = (-1)^{\dim \Delta(P)} (\# \text{ of } \overline{F}_j \text{ with } r(\overline{F}_j) = \overline{F}_j).$$

The power of -1 is as desired since dim $\Delta(P) = \operatorname{rk}(P) - 2$. So it suffices to show that $\ell(F_j)$ is strictly decreasing iff $r(\overline{F}_j) = \overline{F}_j$. " \Longrightarrow " (" \Leftarrow " is similar) Suppose $\ell(F_j) = (x_0, \ldots, x_n)$ is strictly decreasing. We must show that given any $x_r \in \overline{F}_j$ there is F_i with i < j and $F_i \cap F_j = F_j - \{x_r\}$. Now $x_{r-1} \triangleleft x_r \triangleleft x_{r+1}$ is strictly decreasing. Let $x_{r-1} \triangleleft y_r \triangleleft x_{r+1}$ be the weakly increasing chain in $[x_{r-1}, x_{r+1}]$.

Let P be a graded poset. If P has an EL-labelling then $\Delta(P)$ is shellable. In fact, if F_1, \ldots, F_k is a list of the saturated $\hat{0} - \hat{1}$ chains in lexicographic order, then $\overline{F}_1, \ldots, \overline{F}_k$ is a shelling of $\Delta(P)$. Furthermore

 $\mu(P) = (-1)^{\operatorname{rk} P} (\# \text{ of strictly decreasing } F_j).$ (1)

Proof of (1). Using the first half of the theorem

$$\mu(P) = \tilde{\chi}(\Delta(P)) = (-1)^{\dim \Delta(P)} (\# \text{ of } \overline{F}_j \text{ with } r(\overline{F}_j) = \overline{F}_j).$$

The power of -1 is as desired since dim $\Delta(P) = \operatorname{rk}(P) - 2$. So it suffices to show that $\ell(F_j)$ is strictly decreasing iff $r(\overline{F}_j) = \overline{F}_j$. " \Longrightarrow " (" \Leftarrow " is similar) Suppose $\ell(F_j) = (x_0, \ldots, x_n)$ is strictly decreasing. We must show that given any $x_r \in \overline{F}_j$ there is F_i with i < j and $F_i \cap F_j = F_j - \{x_r\}$. Now $x_{r-1} \triangleleft x_r \triangleleft x_{r+1}$ is strictly decreasing. Let $x_{r-1} \triangleleft y_r \triangleleft x_{r+1}$ be the weakly increasing chain in $[x_{r-1}, x_{r+1}]$. Then $F_i = F_j - \{x_r\} \cup \{y_r\}$ is lexicographically smaller than F_j .

Let P be a graded poset. If P has an EL-labelling then $\Delta(P)$ is shellable. In fact, if F_1, \ldots, F_k is a list of the saturated $\hat{0} - \hat{1}$ chains in lexicographic order, then $\overline{F}_1, \ldots, \overline{F}_k$ is a shelling of $\Delta(P)$. Furthermore

 $\mu(P) = (-1)^{\operatorname{rk} P} (\# \text{ of strictly decreasing } F_j).$ (1)

Proof of (1). Using the first half of the theorem

$$\mu(P) = \tilde{\chi}(\Delta(P)) = (-1)^{\dim \Delta(P)} (\# \text{ of } \overline{F}_j \text{ with } r(\overline{F}_j) = \overline{F}_j).$$

The power of -1 is as desired since dim $\Delta(P) = \operatorname{rk}(P) - 2$. So it suffices to show that $\ell(F_j)$ is strictly decreasing iff $r(\overline{F}_j) = \overline{F}_j$. " \Longrightarrow " (" \Leftarrow " is similar) Suppose $\ell(F_j) = (x_0, \ldots, x_n)$ is strictly decreasing. We must show that given any $x_r \in \overline{F}_j$ there is F_i with i < j and $F_i \cap F_j = F_j - \{x_r\}$. Now $x_{r-1} \triangleleft x_r \triangleleft x_{r+1}$ is strictly decreasing. Let $x_{r-1} \triangleleft y_r \triangleleft x_{r+1}$ be the weakly increasing chain in $[x_{r-1}, x_{r+1}]$. Then $F_i = F_j - \{x_r\} \cup \{y_r\}$ is lexicographically smaller than F_j . So i < j and $F_i \cap F_j = F_j - \{x_r\}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proof. (a) For $n \ge 2$, C_n has a single strictly increasing chain.

Proof. (a) For $n \ge 2$, C_n has a single strictly increasing chain. So it has no strictly decreasing chain and $\mu(C_n) = (-1)^n \cdot 0 = 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof. (a) For $n \ge 2$, C_n has a single strictly increasing chain. So it has no strictly decreasing chain and $\mu(C_n) = (-1)^n \cdot 0 = 0$. (b) The $\ell(F_i)$ are in bijection with the permutations of $\{1, \ldots, n\}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof. (a) For $n \ge 2$, C_n has a single strictly increasing chain. So it has no strictly decreasing chain and $\mu(C_n) = (-1)^n \cdot 0 = 0$. (b) The $\ell(F_i)$ are in bijection with the permutations of $\{1, \ldots, n\}$. The unique strictly decreasing permutation is $(n, n - 1, \ldots, 1)$.

Proof. (a) For $n \ge 2$, C_n has a single strictly increasing chain. So it has no strictly decreasing chain and $\mu(C_n) = (-1)^n \cdot 0 = 0$. (b) The $\ell(F_i)$ are in bijection with the permutations of $\{1, \ldots, n\}$. The unique strictly decreasing permutation is $(n, n - 1, \ldots, 1)$. (c) Combine the proofs in (a) and (b)

Proof. (a) For $n \ge 2$, C_n has a single strictly increasing chain. So it has no strictly decreasing chain and $\mu(C_n) = (-1)^n \cdot 0 = 0$. (b) The $\ell(F_i)$ are in bijection with the permutations of $\{1, \ldots, n\}$. The unique strictly decreasing permutation is $(n, n - 1, \ldots, 1)$. (c) Combine the proofs in (a) and (b) (d) The $\ell(F_i)$ are permutations of $\{2, \ldots, n\}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof. (a) For $n \ge 2$, C_n has a single strictly increasing chain. So it has no strictly decreasing chain and $\mu(C_n) = (-1)^n \cdot 0 = 0$. (b) The $\ell(F_i)$ are in bijection with the permutations of $\{1, \ldots, n\}$. The unique strictly decreasing permutation is $(n, n - 1, \ldots, 1)$. (c) Combine the proofs in (a) and (b) (d) The $\ell(F_i)$ are permutations of $\{2, \ldots, n\}$. Suppose $\ell(F_i) = (n, n - 1, \ldots, 2)$ where $F_i = \pi_0 \triangleleft \pi_1 \triangleleft \ldots \triangleleft \pi_{n-1}$.

Proof. (a) For $n \ge 2$, C_n has a single strictly increasing chain. So it has no strictly decreasing chain and $\mu(C_n) = (-1)^n \cdot 0 = 0$. (b) The $\ell(F_i)$ are in bijection with the permutations of $\{1, \ldots, n\}$. The unique strictly decreasing permutation is $(n, n - 1, \ldots, 1)$. (c) Combine the proofs in (a) and (b) (d) The $\ell(F_i)$ are permutations of $\{2, \ldots, n\}$. Suppose $\ell(F_i) = (n, n - 1, \ldots, 2)$ where $F_i = \pi_0 \triangleleft \pi_1 \triangleleft \ldots \triangleleft \pi_{n-1}$. Then π_1 is obtained from π_0 by merging $\{n\}$ with another block, giving n - 1 choices.

Proof. (a) For n > 2, C_n has a single strictly increasing chain. So it has no strictly decreasing chain and $\mu(C_n) = (-1)^n \cdot 0 = 0$. (b) The $\ell(F_i)$ are in bijection with the permutations of $\{1, \ldots, n\}$. The unique strictly decreasing permutation is (n, n-1, ..., 1). (c) Combine the proofs in (a) and (b) (d) The $\ell(F_i)$ are permutations of $\{2, \ldots, n\}$. Suppose $\ell(F_i) = (n, n-1, \dots, 2)$ where $F_i = \pi_0 \triangleleft \pi_1 \triangleleft \dots \triangleleft \pi_{n-1}$. Then π_1 is obtained from π_0 by merging $\{n\}$ with another block, giving n-1 choices. Next π_2 is obtained from π_1 by merging the block containing n-1 with another block, giving n-2choices. etc.

Proof. (a) For $n \ge 2$, C_n has a single strictly increasing chain. So it has no strictly decreasing chain and $\mu(C_n) = (-1)^n \cdot 0 = 0$. (b) The $\ell(F_i)$ are in bijection with the permutations of $\{1, \ldots, n\}$. The unique strictly decreasing permutation is (n, n-1, ..., 1). (c) Combine the proofs in (a) and (b) (d) The $\ell(F_i)$ are permutations of $\{2, \ldots, n\}$. Suppose $\ell(F_i) = (n, n-1, ..., 2)$ where $F_i = \pi_0 < \alpha_1 < ... < \alpha_{n-1}$. Then π_1 is obtained from π_0 by merging $\{n\}$ with another block, giving n-1 choices. Next π_2 is obtained from π_1 by merging the block containing n-1 with another block, giving n-2choices, etc. So the total number of such F_i is (n-1)!.