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Proof that product is preserved.  We wish to show

M8 = MeMP. But given x,y € P:

My = (@ B)(x,y) = D a(x,2)8(z,y) = (MM )yy. O
Proposition ‘
If « € 1(P) then o~ exists if and only if a(x,x) # 0 for all x € P.
Proof. By the previous theorem

Jat = IM*) ! = detM* £0 <= []ea(x,x) #0. O
xeP
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The zeta function of P is ¢ € I(P) defined by

1 ifx <y,

The Mobius function of P is . = ¢ . Note that 4 is well defined
by the previous proposition. From the definition of p:

5(Xay):(:u'*C)(X7y): Z M(X7Z)C(Zvy): Z :U(sz)'

ze[x.y] ze[x,y]

Soifx =y then pu(x,x) = 1;ifx <y then >, \ju(X,z) =0.
Equivalently

1 ifx =y,

nx.y) = { — ey HX,2) ifx <y.

Note. If P has a zero then we write

u(y) = p(0.,y).
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! ify =0,
“(y)_{ — S, u(z) ity >0.

Example: The Chain.

310
2¢ 0
C3=

1t -1

041
u(0) = u(0) = 1
w(1) = —p(0) = -1,
1(2) = —(u(0) + u(1)) = ~(1—1) =0
(3)= )+



! ify =0,
“(y)_{ — S, u(z) ity >0.

Example: The Chain.

310
21 0
C3=
1y -1
0¢ 1
1(0) = u(0) = 1,
(1) = —p(0) =
p(2) = —(u(0) + p(1)) = —(1 - 1) =0,
1(3) = —(u(0) + (1) + u(2)) = (1 -1+0) =0,
Proposition

1 ifi=|
In Cp we have u(i,j) =< -1 ifi<j,
0 else.
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u({1,2}) = —(u(0) + n({1}) + u({2}))
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T u(2) + (3

1)+ u(3))
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Example: The Divisor Lattice.

Dig =

0
2
. 1v 1

n(1) = p(0) =1,

u(2) = 1(3) = -1,

w(6) = —(u(1) + u(2) + pu(3)) = -(1-1-1) =1,

p(9) = ~(u(1) + p(3)) = ~(1 1) =0,

1(18) = —(1—1—1+1+0)=0.
Conjecture
If d € Dy has prime factorization d = pJ™ - - p™ then

_f(FDF ifmy = =my =1,
M(d)_{ 0 if m; > 2 for some i.
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1. Iff : P — Q is anisomorphism and x,y € P then
MP(va) - IUQ(f(X)f(y))

2. Ifa,bePandx,y € Q then
/J’PXQ((a'/X)?(bvy)) = MP(a;b)NQ(X,y)~ (l)

Proof for P x Q. For any poset R, the equation

> _teqr,s) (T, t) = 6(r, s) uniquely defines 1. So it suffices to
show that the right-hand side of (1) satisfies the defining
equation.
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Theorem

1. Iff : P — Q is anisomorphism and x,y € P then
MP(va) - IUQ(f(X)f(y))
2. Ifa,bePandx,y € Q then
/J’PXQ((a'/X)?(bvy)) :MP(aab)MQ(XaY)~ (l)
Proof for P x Q. For any poset R, the equation
> _teqr,s) (T, t) = 6(r, s) uniquely defines 1. So it suffices to

show that the right-hand side of (1) satisfies the defining
equation.

Z :U’P(avc):U’Q(X’Z) = Z pe(a,c) Z MQ(XvZ)

(c,z)€l(ax),(by)] celab] zexy]
- 5P(a7b)5Q(X7y)
= 5P><Q((avx)v(b7y))' [
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1. If S € By then (S) = (—1)SI
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(DR ifmy = =m =1,
M(d)_{ 0 if m; > 2 for some i.
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(1935))

Consider a finite poset P and two functions f : P — R and
g : P — R. Then the following are equivalent statements.

= g(x)forally € P.

x<y
= u(x,y)f(x)forally € P.
x<y
Proof. LetL :Xxy,...,Xy be the linear extension used for | (P).

Associate with f the row vector v = [f(x1) - - - f(xn)] and
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