Möbius Functions of Posets I: Introduction to Partially Ordered Sets

Bruce Sagan
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027
sagan@math.msu.edu
www.math.msu.edu/~sagan

June 25, 2007

Motivating Examples

Poset Basics

Isomorphism and Products

Outline

Motivating Examples

Poset Basics

Isomorphism and Products

Given a set, S, let

$$\#S = |S| = \text{cardinality of } S.$$

Given a set, S, let

$$\#S = |S| = \text{cardinality of } S.$$

The Principle of Inclusion-Exclusion or PIE is a very useful tool in enumerative combinatorics.

Given a set, S, let

$$\#S = |S| = \text{cardinality of } S.$$

The Principle of Inclusion-Exclusion or PIE is a very useful tool in enumerative combinatorics.

Theorem (PIE)

Let *U* be a finite set and $U_1, \ldots, U_n \subseteq U$.

$$|U - \bigcup_{i=1}^{n} U_{i}| = |U| - \sum_{1 \leq i \leq n} |U_{i}| + \sum_{1 \leq i < j \leq n} |U_{i} \cap U_{j}|$$
$$- \cdots + (-1)^{n} |\bigcap_{i=1}^{n} U_{i}|.$$

Let

 $\mathbb{Z}_{>0}$ = the nonnegative integers.

Let

$$\mathbb{Z}_{\geq 0} =$$
 the nonnegative integers.

If one takes a function $f: \mathbb{Z}_{\geq 0} \to \mathbb{R}$ then there is an analogue of the derivative, namely the difference operator

$$\Delta f(n) = f(n) - f(n-1)$$

(where f(-1) = 0 by definition).

Let

$$\mathbb{Z}_{\geq 0} =$$
 the nonnegative integers.

If one takes a function $f: \mathbb{Z}_{\geq 0} \to \mathbb{R}$ then there is an analogue of the derivative, namely the difference operator

$$\Delta f(n) = f(n) - f(n-1)$$

(where f(-1) = 0 by definition). There is also an analogue of the integral, namely the summation operator

$$Sf(n) = \sum_{i=0}^{n} f(i).$$

Let

$$\mathbb{Z}_{\geq 0} =$$
 the nonnegative integers.

If one takes a function $f: \mathbb{Z}_{\geq 0} \to \mathbb{R}$ then there is an analogue of the derivative, namely the difference operator

$$\Delta f(n) = f(n) - f(n-1)$$

(where f(-1) = 0 by definition). There is also an analogue of the integral, namely the summation operator

$$Sf(n) = \sum_{i=0}^{n} f(i).$$

The Fundamental Theorem of the Difference Calculus or FTDC is as follows.

Theorem (FTDC)

If
$$f: \mathbb{Z}_{>0} \to \mathbb{R}$$
 then

$$\Delta Sf(n) = f(n)$$
.

If $d, n \in \mathbb{Z}$ then write $d \mid n$ if d divides evenly into n.

If $d, n \in \mathbb{Z}$ then write $d \mid n$ if d divides evenly into n. The number-theoretic Möbius function is $\mu : \mathbb{Z}_{>0} \to \mathbb{Z}$ defined as

$$\mu(n) = \begin{cases} 0 & \text{if } n \text{ is not square free,} \\ (-1)^k & \text{if } n = \text{product of } k \text{ distinct primes.} \end{cases}$$

If $d, n \in \mathbb{Z}$ then write $d \mid n$ if d divides evenly into n. The number-theoretic Möbius function is $\mu : \mathbb{Z}_{>0} \to \mathbb{Z}$ defined as

$$\mu(n) = \begin{cases} 0 & \text{if } n \text{ is not square free,} \\ (-1)^k & \text{if } n = \text{product of } k \text{ distinct primes.} \end{cases}$$

The importance of μ lies in the number-theoretic Möbius Inversion Theorem or MIT.

If $d, n \in \mathbb{Z}$ then write d|n if d divides evenly into n. The number-theoretic Möbius function is $\mu: \mathbb{Z}_{>0} \to \mathbb{Z}$ defined as

$$\mu(n) = \begin{cases} 0 & \text{if } n \text{ is not square free,} \\ (-1)^k & \text{if } n = \text{product of } k \text{ distinct primes.} \end{cases}$$

The importance of μ lies in the number-theoretic Möbius Inversion Theorem or MIT.

Theorem (Number Theory MIT)

Let $f, g: \mathbb{Z}_{>0} \to \mathbb{R}$ satisfy

$$f(n) = \sum_{d|n} g(d)$$

for all $n \in \mathbb{Z}_{>0}$. Then

$$g(n) = \sum_{d|n} \mu(n/d) f(d).$$

1. It unifies and generalizes the three previous examples.

- 1. It unifies and generalizes the three previous examples.
- 2. It makes the number-theoretic definition transparent.

- 1. It unifies and generalizes the three previous examples.
- 2. It makes the number-theoretic definition transparent.
- 3. It encodes topological information about partially ordered sets.

- 1. It unifies and generalizes the three previous examples.
- 2. It makes the number-theoretic definition transparent.
- 3. It encodes topological information about partially ordered sets.
- 4. It can be used to solve combinatorial problems.

Outline

Motivating Examples

Poset Basics

Isomorphism and Products

1. (reflexivity) $x \le x$,

- 1. (reflexivity) $x \leq x$,
- 2. (antisymmetry) $x \le y$ and $y \le x$ implies x = y,

- 1. (reflexivity) $x \leq x$,
- 2. (antisymmetry) $x \le y$ and $y \le x$ implies x = y,
- 3. (transitivity) $x \le y$ and $y \le z$ implies $x \le z$.

- 1. (reflexivity) $x \le x$,
- 2. (antisymmetry) $x \le y$ and $y \le x$ implies x = y,
- 3. (transitivity) $x \le y$ and $y \le z$ implies $x \le z$.

Given any poset notation, if we wish to be specific about the poset P involved, we attach P as a subscript. For example, using \leq_P for \leq .

- 1. (reflexivity) $x \le x$,
- 2. (antisymmetry) $x \le y$ and $y \le x$ implies x = y,
- 3. (transitivity) $x \le y$ and $y \le z$ implies $x \le z$.

Given any poset notation, if we wish to be specific about the poset P involved, we attach P as a subscript. For example, using \leq_P for \leq . We also adopt the usual conventions for inequalities. For example, x < y means $x \leq y$ and $x \neq y$.

- 1. (reflexivity) $x \le x$,
- 2. (antisymmetry) $x \le y$ and $y \le x$ implies x = y,
- 3. (transitivity) $x \le y$ and $y \le z$ implies $x \le z$.

Given any poset notation, if we wish to be specific about the poset P involved, we attach P as a subscript. For example, using \leq_P for \leq . We also adopt the usual conventions for inequalities. For example, x < y means $x \leq y$ and $x \neq y$. If $x, y \in P$ then x is covered by y or y covers x, written $x \lhd y$, if x < y and there is no z with x < z < y.

- 1. (reflexivity) $x \le x$,
- 2. (antisymmetry) $x \le y$ and $y \le x$ implies x = y,
- 3. (transitivity) $x \le y$ and $y \le z$ implies $x \le z$.

Given any poset notation, if we wish to be specific about the poset P involved, we attach P as a subscript. For example, using \leq_P for \leq . We also adopt the usual conventions for inequalities. For example, x < y means $x \leq y$ and $x \neq y$. If $x, y \in P$ then x is covered by y or y covers x, written $x \lhd y$, if x < y and there is no z with x < z < y. The Hasse diagram of P is the (directed) graph with vertices P and an edge from x up to y if $x \lhd y$.

The *chain* of *length* n is $C_n = \{0, 1, ..., n\}$ with the usual \leq on the integers.

The *chain* of *length* n is $C_n = \{0, 1, ..., n\}$ with the usual \leq on the integers.

$$C_3=$$

The *chain* of *length* n is $C_n = \{0, 1, ..., n\}$ with the usual \leq on the integers.

$$C_3=$$

0•

The *chain* of *length* n is $C_n = \{0, 1, ..., n\}$ with the usual \leq on the integers.

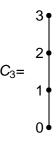
Example: The Chain.

The *chain* of *length* n is $C_n = \{0, 1, ..., n\}$ with the usual \leq on the integers.

$$C_3 = \begin{bmatrix} 2 & & \\ & & \\ & 1 & \\ & & 0 & \end{bmatrix}$$

Example: The Chain.

The *chain* of *length* n is $C_n = \{0, 1, ..., n\}$ with the usual \leq on the integers.



The Boolean algebra is

$$\textit{B}_{\textit{n}} = \{\textit{S} \; : \; \textit{S} \subseteq \{1, 2, \ldots, n\}\}$$

The Boolean algebra is

$$\textit{B}_{\textit{n}} = \{\textit{S} \; : \; \textit{S} \subseteq \{1, 2, \ldots, n\}\}$$

$$B_3 =$$

The Boolean algebra is

$$B_n = \{S : S \subseteq \{1, 2, \dots, n\}\}$$

$$B_3 =$$

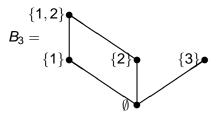
The Boolean algebra is

$$\textit{B}_{\textit{n}} = \{\textit{S} \; : \; \textit{S} \subseteq \{1, 2, \ldots, n\}\}$$

$$B_3 = \{1\} \bullet \{2\} \bullet \{3\} \bullet$$

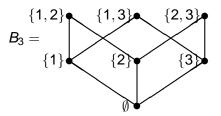
The Boolean algebra is

$$B_n = \{S : S \subseteq \{1, 2, \dots, n\}\}$$



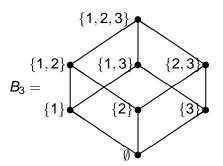
The Boolean algebra is

$$\textit{B}_{\textit{n}} = \{\textit{S} \; : \; \textit{S} \subseteq \{1, 2, \ldots, n\}\}$$



The Boolean algebra is

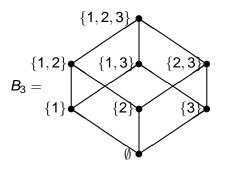
$$\textit{B}_{\textit{n}} = \{\textit{S} \; : \; \textit{S} \subseteq \{1, 2, \ldots, \textit{n}\}\}$$



The Boolean algebra is

$$B_n = \{S : S \subseteq \{1, 2, \dots, n\}\}$$

partially ordered by $S \leq T$ if and only if $S \subseteq T$.



Note that B_3 looks like a cube.

Given $n \in \mathbb{Z}_{>0}$ the corresponding *divisor lattice* is

$$D_n = \{d \in \mathbb{Z}_{>0} : d|n\}$$

Given $n \in \mathbb{Z}_{>0}$ the corresponding *divisor lattice* is

$$\textit{D}_n = \{\textit{d} \in \mathbb{Z}_{>0} \ : \ \textit{d}|n\}$$

$$D_{18} =$$

Given $n \in \mathbb{Z}_{>0}$ the corresponding *divisor lattice* is

$$\textit{D}_n = \{\textit{d} \in \mathbb{Z}_{>0} \ : \ \textit{d}|n\}$$

$$D_{18} =$$

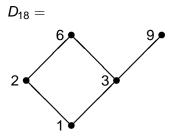
Given $n \in \mathbb{Z}_{>0}$ the corresponding *divisor lattice* is

$$D_n = \{d \in \mathbb{Z}_{>0} : d|n\}$$

$$D_{18} =$$

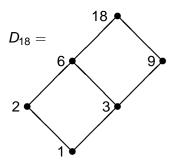
Given $n \in \mathbb{Z}_{>0}$ the corresponding *divisor lattice* is

$$D_n = \{d \in \mathbb{Z}_{>0} : d|n\}$$



Given $n \in \mathbb{Z}_{>0}$ the corresponding *divisor lattice* is

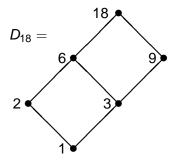
$$D_n = \{d \in \mathbb{Z}_{>0} : d|n\}$$



Given $n \in \mathbb{Z}_{>0}$ the corresponding *divisor lattice* is

$$D_n = \{d \in \mathbb{Z}_{>0} : d|n\}$$

partially ordered by $c \leq_{D_n} d$ if and only if $c \mid d$.



Note that D_{18} looks like a rectangle.

In a poset P, a *minimal* element is $x \in P$ such that there is no $y \in P$ with y < x.

Example. The poset on the left has minimal elements u and v,

Example. The poset on the left has minimal elements u and v, and maximal elements x and y.

Example. The poset on the left has minimal elements u and v, and maximal elements x and y.

A poset has a zero if it has a unique minimal element, 0.

Example. The poset on the left has minimal elements u and v, and maximal elements x and y.

A poset *has a zero* if it has a unique minimal element, 0. A poset *has a one* if it has a unique maximal element, 1.

Example. The poset on the left has minimal elements u and v, and maximal elements x and y.

A poset *has a zero* if it has a unique minimal element, $\hat{0}$. A poset *has a one* if it has a unique maximal element, $\hat{1}$. A poset if *bounded* if it has both a $\hat{0}$ and a $\hat{1}$.

Example. The poset on the left has minimal elements u and v, and maximal elements x and y.

A poset *has a zero* if it has a unique minimal element, $\hat{0}$. A poset *has a one* if it has a unique maximal element, $\hat{1}$. A poset if *bounded* if it has both a $\hat{0}$ and a $\hat{1}$.

Example. The poset on the left has minimal elements u and v, and maximal elements x and y.

A poset *has a zero* if it has a unique minimal element, $\hat{0}$. A poset *has a one* if it has a unique maximal element, $\hat{1}$. A poset if *bounded* if it has both a $\hat{0}$ and a $\hat{1}$.

$$\hat{\mathbf{0}}_{C_n} = \mathbf{0},$$

Example. The poset on the left has minimal elements u and v, and maximal elements x and y.

A poset *has a zero* if it has a unique minimal element, $\hat{0}$. A poset *has a one* if it has a unique maximal element, $\hat{1}$. A poset if *bounded* if it has both a $\hat{0}$ and a $\hat{1}$.

$$\hat{0}_{C_n} = 0, \ \hat{1}_{C_n} = n,$$

Example. The poset on the left has minimal elements u and v, and maximal elements x and y.

A poset *has a zero* if it has a unique minimal element, $\hat{0}$. A poset *has a one* if it has a unique maximal element, $\hat{1}$. A poset if *bounded* if it has both a $\hat{0}$ and a $\hat{1}$.

$$\hat{0}_{C_n} = 0, \ \hat{1}_{C_n} = n, \ \hat{0}_{B_n} = \emptyset,$$

Example. The poset on the left has minimal elements u and v, and maximal elements x and y.

A poset *has a zero* if it has a unique minimal element, $\hat{0}$. A poset *has a one* if it has a unique maximal element, $\hat{1}$. A poset if *bounded* if it has both a $\hat{0}$ and a $\hat{1}$.

$$\hat{0}_{C_n} = 0, \ \hat{1}_{C_n} = n, \ \hat{0}_{B_n} = \emptyset, \ \hat{1}_{B_n} = \{1, \dots, n\},\$$

Example. The poset on the left has minimal elements u and v, and maximal elements x and y.

A poset *has a zero* if it has a unique minimal element, $\hat{0}$. A poset *has a one* if it has a unique maximal element, $\hat{1}$. A poset if *bounded* if it has both a $\hat{0}$ and a $\hat{1}$.

$$\hat{0}_{C_n} = 0, \ \hat{1}_{C_n} = n, \ \hat{0}_{B_n} = \emptyset, \ \hat{1}_{B_n} = \{1, \dots, n\}, \ \hat{0}_{D_n} = 1,$$

Example. The poset on the left has minimal elements u and v, and maximal elements x and y.

A poset *has a zero* if it has a unique minimal element, $\hat{0}$. A poset *has a one* if it has a unique maximal element, $\hat{1}$. A poset if *bounded* if it has both a $\hat{0}$ and a $\hat{1}$.

$$\hat{0}_{\textit{C}_n} = 0, \ \hat{1}_{\textit{C}_n} = \textit{n}, \ \hat{0}_{\textit{B}_n} = \emptyset, \ \hat{1}_{\textit{B}_n} = \{1, \dots, n\}, \ \hat{0}_{\textit{D}_n} = 1, \ \hat{1}_{\textit{D}_n} = \textit{n}.$$

Example. The poset on the left has minimal elements u and v, and maximal elements x and y.

A poset *has a zero* if it has a unique minimal element, $\hat{0}$. A poset *has a one* if it has a unique maximal element, $\hat{1}$. A poset if *bounded* if it has both a $\hat{0}$ and a $\hat{1}$.

Example. Our three fundamental examples are bounded:

$$\hat{0}_{\textit{C}_n} = 0, \ \hat{1}_{\textit{C}_n} = \textit{n}, \ \hat{0}_{\textit{B}_n} = \emptyset, \ \hat{1}_{\textit{B}_n} = \{1, \dots, n\}, \ \hat{0}_{\textit{D}_n} = 1, \ \hat{1}_{\textit{D}_n} = \textit{n}.$$

If $x \le y$ in P then the corresponding *closed interval* is

$$[x, y] = \{z : x \le z \le y\}.$$

Example. The poset on the left has minimal elements u and v, and maximal elements x and y.

A poset *has a zero* if it has a unique minimal element, $\hat{0}$. A poset *has a one* if it has a unique maximal element, $\hat{1}$. A poset if *bounded* if it has both a $\hat{0}$ and a $\hat{1}$.

Example. Our three fundamental examples are bounded:

$$\hat{0}_{\textit{C}_n} = 0, \ \hat{1}_{\textit{C}_n} = \textit{n}, \ \hat{0}_{\textit{B}_n} = \emptyset, \ \hat{1}_{\textit{B}_n} = \{1, \dots, n\}, \ \hat{0}_{\textit{D}_n} = 1, \ \hat{1}_{\textit{D}_n} = \textit{n}.$$

If $x \le y$ in P then the corresponding *closed interval* is

$$[x,y] = \{z : x \leq z \leq y\}.$$

Open and half-open intervals are defined analogously.

Example. The poset on the left has minimal elements u and v, and maximal elements x and y.

A poset *has a zero* if it has a unique minimal element, $\hat{0}$. A poset *has a one* if it has a unique maximal element, $\hat{1}$. A poset if *bounded* if it has both a $\hat{0}$ and a $\hat{1}$.

Example. Our three fundamental examples are bounded:

$$\hat{0}_{\textit{C}_n} = 0, \ \hat{1}_{\textit{C}_n} = \textit{n}, \ \hat{0}_{\textit{B}_n} = \emptyset, \ \hat{1}_{\textit{B}_n} = \{1, \dots, n\}, \ \hat{0}_{\textit{D}_n} = 1, \ \hat{1}_{\textit{D}_n} = \textit{n}.$$

If $x \le y$ in P then the corresponding *closed interval* is

$$[x,y] = \{z : x \leq z \leq y\}.$$

Open and half-open intervals are defined analogously. Note that [x, y] is a poset in its own right and it has a zero and a one:

$$\hat{0}_{[x,y]}=x,$$
 $\hat{1}_{[x,y]}=y.$

Example: The Chain.

In C_9 we have the interval [4,7]:

Example: The Chain.

In C_9 we have the interval [4,7]:

Example: The Chain.

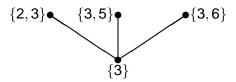
In C_9 we have the interval [4,7]:

This interval looks like C_3 .

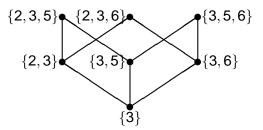
In \emph{B}_{7} we have the interval [{3},{2,3,5,6}]:

In B_7 we have the interval [{3}, {2,3,5,6}]:

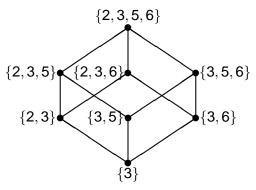
In B_7 we have the interval [{3}, {2,3,5,6}]:



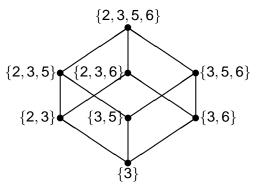
In B_7 we have the interval [{3}, {2,3,5,6}]:



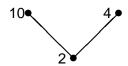
In B_7 we have the interval [{3}, {2, 3, 5, 6}]:

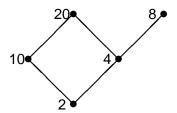


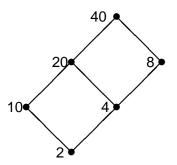
In B_7 we have the interval [{3}, {2, 3, 5, 6}]:



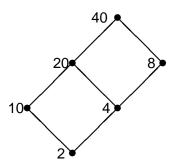
Note that this interval looks like B_3 .







In D_{80} we have the interval [2, 40]:



Note that this interval looks like D_{18} .

1. $x \land y \le x$ and $x \land y \le y$,

- 1. $x \land y \le x$ and $x \land y \le y$,
- 2. if $z \le x$ and $z \le y$ then $z \le x \land y$.

- 1. $x \land y \le x$ and $x \land y \le y$,
- 2. if $z \le x$ and $z \le y$ then $z \le x \land y$.

Also $x, y \in P$ have a *least upper bound* or *join* if there is an element $x \lor y$ in P such that

- 1. $x \land y \le x$ and $x \land y \le y$,
- 2. if $z \le x$ and $z \le y$ then $z \le x \land y$.

Also $x, y \in P$ have a *least upper bound* or *join* if there is an element $x \lor y$ in P such that

1. $x \lor y \ge x$ and $x \lor y \ge y$,

- 1. $x \land y \le x$ and $x \land y \le y$,
- 2. if $z \le x$ and $z \le y$ then $z \le x \land y$.

Also $x, y \in P$ have a *least upper bound* or *join* if there is an element $x \lor y$ in P such that

- 1. $x \lor y \ge x$ and $x \lor y \ge y$,
- 2. if $z \ge x$ and $z \ge y$ then $z \ge x \land y$.

- 1. $x \land y \le x$ and $x \land y \le y$,
- 2. if $z \le x$ and $z \le y$ then $z \le x \land y$.

Also $x, y \in P$ have a *least upper bound* or *join* if there is an element $x \lor y$ in P such that

- 1. $x \lor y \ge x$ and $x \lor y \ge y$,
- 2. if $z \ge x$ and $z \ge y$ then $z \ge x \land y$.

We say P is a *lattice* if every $x, y \in P$ have both a meet and a join.

- 1. $x \land y \le x$ and $x \land y \le y$,
- 2. if $z \le x$ and $z \le y$ then $z \le x \land y$.

Also $x, y \in P$ have a *least upper bound* or *join* if there is an element $x \lor y$ in P such that

- 1. $x \lor y \ge x$ and $x \lor y \ge y$,
- 2. if $z \ge x$ and $z \ge y$ then $z \ge x \land y$.

We say P is a *lattice* if every $x, y \in P$ have both a meet and a join.

Example.

1. C_n is a lattice with $i \land j = \min\{i, j\}$ and $i \lor j = \max\{i, j\}$.

- 1. $x \land y \le x$ and $x \land y \le y$,
- 2. if $z \le x$ and $z \le y$ then $z \le x \land y$.

Also $x, y \in P$ have a *least upper bound* or *join* if there is an element $x \lor y$ in P such that

- 1. $x \lor y \ge x$ and $x \lor y \ge y$,
- 2. if $z \ge x$ and $z \ge y$ then $z \ge x \land y$.

We say P is a *lattice* if every $x, y \in P$ have both a meet and a join.

Example.

- 1. C_n is a lattice with $i \land j = \min\{i, j\}$ and $i \lor j = \max\{i, j\}$.
- 2. B_n is a lattice with $S \wedge T = S \cap T$ and $S \vee T = S \cup T$.

- 1. $x \land y \le x$ and $x \land y \le y$,
- 2. if $z \le x$ and $z \le y$ then $z \le x \land y$.

Also $x, y \in P$ have a *least upper bound* or *join* if there is an element $x \lor y$ in P such that

- 1. $x \lor y \ge x$ and $x \lor y \ge y$,
- 2. if $z \ge x$ and $z \ge y$ then $z \ge x \land y$.

We say P is a *lattice* if every $x, y \in P$ have both a meet and a join.

Example.

- 1. C_n is a lattice with $i \land j = \min\{i, j\}$ and $i \lor j = \max\{i, j\}$.
- 2. B_n is a lattice with $S \wedge T = S \cap T$ and $S \vee T = S \cup T$.
- 3. D_n is a lattice with $c \wedge d = \gcd\{c, d\}$ and $c \vee d = \operatorname{lcm}\{c, d\}$.

Outline

Motivating Examples

Poset Basics

Isomorphism and Products

$$x \leq_P y \implies f(x) \leq_Q f(y).$$

$$x \leq_P y \implies f(x) \leq_Q f(y).$$

An *isomorphism* is a bijection $f: P \to Q$ such that both f and f^{-1} are order preserving. In this case P and Q are *isomorphic*, written $P \cong Q$.

$$x \leq_P y \implies f(x) \leq_Q f(y).$$

An *isomorphism* is a bijection $f: P \to Q$ such that both f and f^{-1} are order preserving. In this case P and Q are *isomorphic*, written $P \cong Q$.

Proposition

If $i \leq j$ in C_n then $[i,j] \cong C_{j-i}$.

$$x \leq_P y \implies f(x) \leq_Q f(y).$$

An *isomorphism* is a bijection $f: P \to Q$ such that both f and f^{-1} are order preserving. In this case P and Q are *isomorphic*, written $P \cong Q$.

Proposition

```
If i \leq j in C_n then [i,j] \cong C_{j-i}.
If S \subseteq T in B_n then [S,T] \cong B_{|T-S|}.
```

$$x \leq_{P} y \implies f(x) \leq_{Q} f(y).$$

An *isomorphism* is a bijection $f: P \to Q$ such that both f and f^{-1} are order preserving. In this case P and Q are *isomorphic*, written $P \cong Q$.

Proposition

```
If i \leq j in C_n then [i,j] \cong C_{j-i}.
If S \subseteq T in B_n then [S,T] \cong B_{|T-S|}.
If c \mid d in D_n then [c,d] \cong D_{d/c}.
```

$$x \leq_{P} y \implies f(x) \leq_{Q} f(y).$$

An *isomorphism* is a bijection $f: P \to Q$ such that both f and f^{-1} are order preserving. In this case P and Q are *isomorphic*, written $P \cong Q$.

Proposition

```
If i \leq j in C_n then [i,j] \cong C_{j-i}.
If S \subseteq T in B_n then [S,T] \cong B_{|T-S|}.
If c|d in D_n then [c,d] \cong D_{d/c}.
```

Proof for C_n . Define $f:[i,j] \to C_{j-i}$ by f(k) = k-i.

$$x \leq_P y \implies f(x) \leq_Q f(y).$$

An *isomorphism* is a bijection $f: P \to Q$ such that both f and f^{-1} are order preserving. In this case P and Q are *isomorphic*, written $P \cong Q$.

Proposition

If $i \leq j$ in C_n then $[i,j] \cong C_{j-i}$. If $S \subseteq T$ in B_n then $[S,T] \cong B_{|T-S|}$. If $c \mid d$ in D_n then $[c,d] \cong D_{d/c}$.

Proof for C_n . Define $f:[i,j] \to C_{j-i}$ by f(k) = k-i. Then f is order preserving since

$$k \le l \implies k-i \le l-i \implies f(k) \le f(l)$$
.

$$x \leq_P y \implies f(x) \leq_Q f(y).$$

An *isomorphism* is a bijection $f: P \to Q$ such that both f and f^{-1} are order preserving. In this case P and Q are *isomorphic*, written $P \cong Q$.

Proposition

If $i \leq j$ in C_n then $[i,j] \cong C_{j-i}$. If $S \subseteq T$ in B_n then $[S,T] \cong B_{|T-S|}$. If $c \mid d$ in D_n then $[c,d] \cong D_{d/c}$.

Proof for C_n . Define $f:[i,j] \to C_{j-i}$ by f(k) = k-i. Then f is order preserving since

$$k \le l \implies k-i \le l-i \implies f(k) \le f(l)$$
.

Also *f* is bijective with inverse $f^{-1}(k) = k + i$.

$$x \leq_P y \implies f(x) \leq_Q f(y).$$

An *isomorphism* is a bijection $f: P \to Q$ such that both f and f^{-1} are order preserving. In this case P and Q are *isomorphic*, written $P \cong Q$.

Proposition

If $i \leq j$ in C_n then $[i,j] \cong C_{j-i}$. If $S \subseteq T$ in B_n then $[S,T] \cong B_{|T-S|}$. If c|d in D_n then $[c,d] \cong D_{d/c}$.

Proof for C_n . Define $f:[i,j] \to C_{j-i}$ by f(k) = k-i. Then f is order preserving since

$$k \le I \implies k-i \le l-i \implies f(k) \le f(l).$$

Also f is bijective with inverse $f^{-1}(k) = k + i$. It is easy to check that f^{-1} is order preserving.

$$x \leq_P y \implies f(x) \leq_Q f(y).$$

An *isomorphism* is a bijection $f: P \to Q$ such that both f and f^{-1} are order preserving. In this case P and Q are *isomorphic*, written $P \cong Q$.

Proposition

If $i \leq j$ in C_n then $[i,j] \cong C_{j-i}$. If $S \subseteq T$ in B_n then $[S,T] \cong B_{|T-S|}$. If c|d in D_n then $[c,d] \cong D_{d/c}$.

Proof for C_n . Define $f:[i,j] \to C_{j-i}$ by f(k) = k-i. Then f is order preserving since

$$k \le l \implies k-i \le l-i \implies f(k) \le f(l)$$
.

Also f is bijective with inverse $f^{-1}(k) = k + i$. It is easy to check that f^{-1} is order preserving.

Exercise. Prove the other two parts of the Proposition.

$$P \times Q = \{(a,x) : a \in P, x \in Q\}$$

partially ordered by

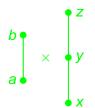
$$(a,x) \leq_{P \times Q} (b,y) \iff a \leq_P b \text{ and } x \leq_Q y.$$

$$P \times Q = \{(a, x) : a \in P, x \in Q\}$$

partially ordered by

$$(a,x) \leq_{P \times Q} (b,y) \iff a \leq_P b \text{ and } x \leq_Q y.$$

Example.

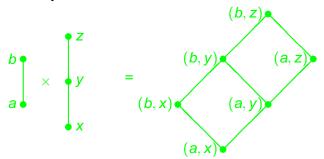


$$P \times Q = \{(a,x) : a \in P, x \in Q\}$$

partially ordered by

$$(a,x) \leq_{P \times Q} (b,y) \iff a \leq_P b \text{ and } x \leq_Q y.$$

Example.

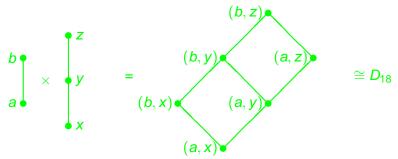


$$P \times Q = \{(a,x) : a \in P, x \in Q\}$$

partially ordered by

$$(a,x) \leq_{P \times Q} (b,y) \iff a \leq_P b \text{ and } x \leq_Q y.$$

Example.



Proposition

For the Boolean algebra: $B_n \cong (C_1)^n$.

Proposition

For the Boolean algebra: $B_n \cong (C_1)^n$.

If the prime factorization of n is $n = p_1^{m_1} \cdots p_k^{m_k}$, then for the

divisor lattice: $D_n \cong C_{m_1} \times \cdots \times C_{m_k}$.

Proposition

For the Boolean algebra: $B_n \cong (C_1)^n$.

If the prime factorization of n is $n = p_1^{m_1} \cdots p_k^{m_k}$, then for the

divisor lattice: $D_n \cong C_{m_1} \times \cdots \times C_{m_k}$.

Proof for B_n .

Proposition

For the Boolean algebra: $B_n \cong (C_1)^n$. If the prime factorization of n is $n = p_1^{m_1} \cdots p_k^{m_k}$, then for the divisor lattice: $D_n \cong C_{m_1} \times \cdots \times C_{m_k}$.

Proof for B_n . Since $C_1 = \{0, 1\}$, we define a map $f: B_n \to (C_1)^n$ by

$$f(S) = (b_1, b_2, \dots, b_n)$$
 where $b_i = \begin{cases} 1 & \text{if } i \in S, \\ 0 & \text{if } i \notin S. \end{cases}$

for $1 \le i \le n$.

Proposition

For the Boolean algebra: $B_n \cong (C_1)^n$. If the prime factorization of n is $n = p_1^{m_1} \cdots p_k^{m_k}$, then for the divisor lattice: $D_n \cong C_{m_1} \times \cdots \times C_{m_k}$.

Proof for B_n . Since $C_1 = \{0, 1\}$, we define a map $f: B_n \to (C_1)^n$ by

$$f(S) = (b_1, b_2, \dots, b_n)$$
 where $b_i = \begin{cases} 1 & \text{if } i \in S, \\ 0 & \text{if } i \notin S. \end{cases}$

for $1 \le i \le n$. To show f is order preserving suppose $f(S) = (b_1, \ldots, b_n)$ and $f(T) = (c_1, \ldots, c_n)$.

Proposition

For the Boolean algebra: $B_n \cong (C_1)^n$. If the prime factorization of n is $n = p_1^{m_1} \cdots p_k^{m_k}$, then for the divisor lattice: $D_n \cong C_{m_1} \times \cdots \times C_{m_k}$.

Proof for B_n . Since $C_1 = \{0, 1\}$, we define a map $f: B_n \to (C_1)^n$ by

$$f(S) = (b_1, b_2, \dots, b_n)$$
 where $b_i = \begin{cases} 1 & \text{if } i \in S, \\ 0 & \text{if } i \notin S. \end{cases}$

for $1 \le i \le n$. To show f is order preserving suppose $f(S) = (b_1, \ldots, b_n)$ and $f(T) = (c_1, \ldots, c_n)$. Now $S \le T$ in B_n means $S \subseteq T$.

Proposition

For the Boolean algebra: $B_n \cong (C_1)^n$. If the prime factorization of n is $n = p_1^{m_1} \cdots p_k^{m_k}$, then for the divisor lattice: $D_n \cong C_{m_1} \times \cdots \times C_{m_k}$.

Proof for B_n . Since $C_1 = \{0, 1\}$, we define a map $f: B_n \to (C_1)^n$ by

$$f(S) = (b_1, b_2, \dots, b_n)$$
 where $b_i = \begin{cases} 1 & \text{if } i \in S, \\ 0 & \text{if } i \notin S. \end{cases}$

for $1 \le i \le n$. To show f is order preserving suppose $f(S) = (b_1, \ldots, b_n)$ and $f(T) = (c_1, \ldots, c_n)$. Now $S \le T$ in B_n means $S \subseteq T$. Equivalently, $i \in S$ implies $i \in T$ for every 1 < i < n.

Proposition

For the Boolean algebra: $B_n \cong (C_1)^n$. If the prime factorization of n is $n = p_1^{m_1} \cdots p_k^{m_k}$, then for the divisor lattice: $D_n \cong C_{m_1} \times \cdots \times C_{m_k}$.

Proof for B_n . Since $C_1 = \{0, 1\}$, we define a map $f: B_n \to (C_1)^n$ by

$$f(S) = (b_1, b_2, \dots, b_n)$$
 where $b_i = \begin{cases} 1 & \text{if } i \in S, \\ 0 & \text{if } i \notin S. \end{cases}$

for $1 \le i \le n$. To show f is order preserving suppose $f(S) = (b_1, \ldots, b_n)$ and $f(T) = (c_1, \ldots, c_n)$. Now $S \le T$ in B_n means $S \subseteq T$. Equivalently, $i \in S$ implies $i \in T$ for every $1 \le i \le n$. So for each $1 \le i \le n$ we have $b_i \le c_i$ in C_1 .

Proposition

For the Boolean algebra: $B_n \cong (C_1)^n$. If the prime factorization of n is $n = p_1^{m_1} \cdots p_k^{m_k}$, then for the divisor lattice: $D_n \cong C_{m_1} \times \cdots \times C_{m_k}$.

Proof for B_n . Since $C_1 = \{0, 1\}$, we define a map $f: B_n \to (C_1)^n$ by

$$f(S) = (b_1, b_2, \dots, b_n)$$
 where $b_i = \begin{cases} 1 & \text{if } i \in S, \\ 0 & \text{if } i \notin S. \end{cases}$

for $1 \le i \le n$. To show f is order preserving suppose $f(S) = (b_1, \ldots, b_n)$ and $f(T) = (c_1, \ldots, c_n)$. Now $S \le T$ in B_n means $S \subseteq T$. Equivalently, $i \in S$ implies $i \in T$ for every $1 \le i \le n$. So for each $1 \le i \le n$ we have $b_i \le c_i$ in C_1 . But then $(b_1, \ldots, b_n) \le (c_1, \ldots, c_n)$ in $(C_1)^n$, i.e. $f(S) \le f(T)$.

Proposition

For the Boolean algebra: $B_n \cong (C_1)^n$. If the prime factorization of n is $n = p_1^{m_1} \cdots p_k^{m_k}$, then for the divisor lattice: $D_n \cong C_{m_1} \times \cdots \times C_{m_k}$.

Proof for B_n . Since $C_1 = \{0, 1\}$, we define a map $f: B_n \to (C_1)^n$ by

$$f(S) = (b_1, b_2, \dots, b_n)$$
 where $b_i = \begin{cases} 1 & \text{if } i \in S, \\ 0 & \text{if } i \notin S. \end{cases}$

for $1 \le i \le n$. To show f is order preserving suppose $f(S) = (b_1, \ldots, b_n)$ and $f(T) = (c_1, \ldots, c_n)$. Now $S \le T$ in B_n means $S \subseteq T$. Equivalently, $i \in S$ implies $i \in T$ for every $1 \le i \le n$. So for each $1 \le i \le n$ we have $b_i \le c_i$ in C_1 . But then $(b_1, \ldots, b_n) \le (c_1, \ldots, c_n)$ in $(C_1)^n$, i.e. $f(S) \le f(T)$. Constructing f^{-1} is done in the obvious way. The proof that f^{-1} is order preserving is just the proof for f read backwards.

Proposition

For the Boolean algebra: $B_n \cong (C_1)^n$. If the prime factorization of n is $n = p_1^{m_1} \cdots p_{\nu}^{m_k}$, then for the divisor lattice: $D_n \cong C_{m_1} \times \cdots \times C_{m_k}$.

Proof for B_n . Since $C_1 = \{0, 1\}$, we define a map $f: B_n \to (C_1)^n$ by

$$f(S) = (b_1, b_2, \dots, b_n)$$
 where $b_i = \begin{cases} 1 & \text{if } i \in S, \\ 0 & \text{if } i \notin S. \end{cases}$

for 1 < i < n. To show f is order preserving suppose $f(S) = (b_1, \ldots, b_n)$ and $f(T) = (c_1, \ldots, c_n)$. Now $S \leq T$ in B_n means $S \subseteq T$. Equivalently, $i \in S$ implies $i \in T$ for every 1 < i < n. So for each 1 < i < n we have $b_i < c_i$ in C_1 . But then $(b_1, \ldots, b_n) \leq (c_1, \ldots, c_n)$ in $(C_1)^n$, i.e. $f(S) \leq f(T)$. Constructing f^{-1} is done in the obvious way. The proof that f^{-1} is order preserving is just the proof for f read backwards. **Exercise.** Prove the statement for D_n .

4D > 4B > 4B > 4B > 900