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1. Möbius functions

Let (P,≤) be a finite poset (partially ordered set).

Let IntP be the set of closed intervals in P :

[x, z] = {y ∈ P | x ≤ y ≤ z}.

The incidence algebra of P is the set

I(P ) = {φ | φ : IntP → C}

under the operations

(φ+ ψ)(x, z) = φ(x, z) + ψ(x, z),
(cφ)(x, z) = cφ(x, z), c ∈ C,

(φ ∗ ψ)(x, z) =
∑

x≤y≤z

φ(x, y)ψ(y, z).

Then I(P ) is an algebra with unit the Kronecker

delta δ(x, z) since δ ∗ φ = φ ∗ δ = φ, e.g.,

(δ ∗ φ)(x, z) =
∑

x≤y≤z

δ(x, y)φ(y, z) = φ(x, z).

Element φ ∈ I(P ) has convolution inverse φ−1 iff

φ(x, x) 6= 0 for all x ∈ P . The zeta function of P is

ζ(x, z) = 1 for all x, z ∈ P . The Möbius function of

P is µ = ζ−1 so ζ ∗µ = δ or
∑

x≤y≤z µ(y, z) = δ(x, z)

or

µ(x, z) =











1 if x = z,

−
∑

x<y≤z

µ(y, z) if x < z.
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µ(x, z) =











1 if x = z,

−
∑

x<y≤z

µ(y, z) if x < z.

Ex. Let Bn be the
Boolean algebra of all
subsets of [n] = {1, . . . , n}
ordered by inclusion.
We compute µ(x, [3])
in B3, putting the value
to the right of x
in the following Hasse diagram.
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Theorem 1 (Möbius Inversion Thm) Given any

two functions f, g : P → C, then

f(z) =
∑

x≤z

g(x) ∀z ∈ P

⇐⇒ g(z) =
∑

x≤z

µ(x, z)f(x) ∀z ∈ P.

This Theorem has as corollaries the Principle of

Inclusion-Exclusion (for P = Bn), the Fundamental

Theorem of the Difference Calculus (for P a chain),

and the Möbius Inversion Theorem of Number The-

ory (for P a divisor lattice).
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2. Subword order

Let A be an alphabet with 0 6∈ A. Partially order

A∗ = {w | w a finite word over A}

by v ≤ w iff v is a subword of w.

Ex. If w = a a b b b a b a then v = a b b a

is a subword as is shown by the green letters in

w = a a b b b a b a.

Word ε = ε(1) . . . ε(n) ∈ (A ∪ 0)∗ has support

Supp ε = {i | ε(i) 6= 0}.

An expansion of v ∈ A∗ is εv ∈ (A ∪ 0)∗ such that

if one restricts εv to its support one obtains v. An

embedding of v into w = w(1) . . . w(n) is an expan-

sion εv = εv(1) . . . εv(n) of v such that

εv(i) = w(i) for all i ∈ Supp εv.

Note that v ≤ w in A∗ iff there is an embedding εv

of v into w.

Ex. In the previous example, the expansion of v

corresponding to the given subword of w is just

εv = a 0 b 0 0 0 b a.
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Given a word w = w(1) . . . w(n) then a run of a’s

in w is a maximal interval of indices [r, s] such that

w(r) = w(r+ 1) = · · · = w(s) = a.

Ex. w = a a b b b a b a has runs of a’s: [1,2], [6,6],

[8,8]; and runs of b’s: [3,5] and [7,7].

An embedding εv of v into w is normal if for every

a ∈ A and every run [r, s] of a’s we have

(r, s] ⊆ Supp εv.

Ex. In w = a a b b b a b a any normal embedding

must contain the elements in blue. So there are

two normal embeddings of v = a b b a, namely

εv = 0 a 0 b b a 0 0 and εv = 0 a 0 b b 0 0 a.

Theorem 2 (Björner) In A∗ we have

µ(v, w) = (−1)|w|−|v|
(w

v

)

n

where |w| is the length of w and
(

w
v

)

n
is the number

of normal embeddings of v in w.

Ex. We have

µ(abba, aabbbaba) = (−1)8−4 · 2 = 2.

5



3. Layered permutations

Let P denote the positive integers. Let Sn denote

the symmetric group on [n]. Then π ∈ Sn is layered

if π has the form

π = a (a− 1) . . . 1 b (b− 1) . . . (a+ 1) . . .

Let L be the set of layered permutations partially

ordered by pattern containment. Then there is a

bijection L ↔ P∗ given by π ↔ p = p(1) . . . p(k)

where the p(i) are the layer lengths of π. Under

this bijection, the partial order becomes p ≤ q iff

there is an expansion εp of p which has length |q|

and satisfies

εp(i) ≤ q(i) for all 1 ≤ i ≤ |q|.

Call such an expansion an embedding of p in q.

Ex. If π = 3 2 1 5 4 and σ = 4 3 2 1 6 5 8 7 then

one occurrence of π in σ is given by the green num-

bers in σ = 4 3 2 1 6 5 8 7. In P∗ we have π and

σ corresponding to p = 3 2 and q = 4 2 2, respec-

tively. And the occurrence of p in q corresponds to

εp = 3 0 2.
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An embedding εp of p in q ∈ Sn is normal if

1. For all i, 1 ≤ i ≤ n, we have

εp(i) = q(i), q(i) − 1, or 0.

2. For every k ∈ P and every run [r, s] of k’s

(a) (r, s] ⊆ Supp εp if k = 1,

(b) r ∈ Supp εp if k > 1.

Ex. In q = 2 2 1 1 1 3 3 then any normal em-

bedding must support the elements in blue. So

there are two normal embeddings of p = 2 1 1 1 3,

namely εp = 2 1 0 1 1 3 0 and εp = 2 0 1 1 1 3 0.

The sign of a normal embedding εp of p in q is

(−1)# of i where εp(i) = q(i) − 1.

The exponent is the defect d(εp).

Theorem 3 (S-V) In L we have

µ(p, q) =
∑

εp

(−1)d(εp)

summed over all normal embeddings εp of p in q.

Ex. We have

µ(21113,2211133) = (−1)2 + (−1)0 = 2.
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4. Further work

A. Topology of L. If P is a poset then [x, z] ⊆ P

has order complex

∆(x, z) = {c | c a chain in (x, z)}.

So ∆(x, z) is a simplicial complex with reduced Eu-

ler characteristic

χ̃(∆(x, z)) :=
∑

i≥−1

(−1)i rk H̃i(∆(x, z)) = µ(x, z).

Theorem 4 (Björner) In A∗, the interval [v, w] is

lexicographically shellable for all v, w. And

rk H̃i(∆(v, w)) =

{

(

w
v

)

n
if i = |w| − |v| − 2,

0 else.

In L, [p, q] is not always shellable. But Forman

developed a discrete analogue of Morse Theory to

compute the homology of any CW-complex by col-

lapsing it onto a subcomplex of critical cells. Bab-

son & Hersh showed how any lexicographic ordering

of the maximal chains of an interval gives rise to

the critical cells of a Morse function.

Conjecture 5 In L there is a Morse function for

[p, q] with a single critical cell of dimension d(εp)

for each normal embedding εp of p in q.
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B. Embedding orders. Let P be any poset. Take

0 6∈ P and set 0 < x for all x ∈ P . Partially order P ∗

by p ≤ q in P ∗ iff there is an expansion εp of length

|q| with

εp(i) ≤ q(i) for all 1 ≤ i ≤ |q|.

Call this the embedding order on P ∗.

Call P a rooted forest if each component of the

Hasse diagram of P is a tree with a unique minimal

element. Then there is a notion of normal embed-

ding in P ∗ where minimal elements play the role

of q(i) = 1, nonminimal elements play the role of

q(i) > 1, and the element adjacent to q(i) on then

unique q(i)-root path plays the role of q(i) − 1.

Conjecture 6 Let P be a rooted forest. Then in

P ∗ we have

µ(p, q) =
∑

εp

(−1)d(εp)

summed over all normal embeddings εp of p in q.

Note that if this conjecture is true then the theo-

rems for A∗ or L are the special cases where P is

an antichain or a chain, respectively.
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C. Other orders. Let S be the set of all permu-

tations ordered by pattern containment. What is

µ(p, q) for p, q ∈ S?

What about P ∗ for any poset P (not just rooted

forests)? The simplest such poset is

x x

x

a b

c

Λ =
�

�
�

�
�

�

@
@

@
@

@
@

Let aj denote the word in Λ∗ consisting of j copies

of a and similarly for the other elements of Λ. Let

Tn(x) denote the nth Chebyshev polynomial of the

first kind.

Conjecture 7 If j, k ≥ 0 then µ(aj, ck) is the coef-

ficient of xk−j in Tk+j(x).
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