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1. Mobius functions

Let (P, <) be a finite poset (partially ordered set).
Let Int P be the set of closed intervals in P:

The incidence algebra of P is the set

under the operations

(¢ +)(x,2) = ¢(z,2) +Y(x, 2),
(chd)(x,z) = cod(x,z), ceC,
(px)(x,2) = D> oz, y)Y(y,2).

r<y<z

Then I(P) is an algebra with unit the Kronecker
delta §(z,z) since 6 xp = xd = ¢, €.9.,

(6 d)(z,2) = ), =z, 99y, 2) = ¢(x, 2).

r<y<z

Element ¢ € I(P) has convolution inverse ¢~ 1 iff
o(x,x) = 0 for all x € P. The zeta function of P is
((x,z) =1 for all z,z € P. The Mbbius function of
Pisp=¢"1so¢xp=208o0r Y« <, uly,z) ==, z2)
or



1 if £ = z,

plr,z) = — Z uw(y,z) ifx<z.
T<y<z
3]

Ex. Let B, be the

Boolean algebra of all 11,2 :
subsets of [n] = {1,...,n} "‘
ordered by inclusion. {1}

We compute u(z, [3])

in B3, putting the value

to the right of « 0
in the following Hasse diagram.

Theorem 1 (MoObius Inversion Thm) Given any
two functions f,qg : P — C, then

f(z)=) glz) VzeP

r<z

— g(z) = > w(z,2)f(z) VzeP

r<z

This Theorem has as corollaries the Principle of
Inclusion-Exclusion (for P = By ), the Fundamental
Theorem of the Difference Calculus (for P a chain),
and the Mobius Inversion Theorem of Number The-
ory (for P a divisor lattice).



2. Subword order

Let A be an alphabet with 0 € A. Partially order

A* = {w | w a finite word over A}

by v < w iff v is a subword of w.

Ex. If w =aabbdbbabathen v = a b b a
IS a subword as is shown by the green letters in
w=aabbbabdba.

Word e = €(1)...e(n) € (AUO)* has support

Suppe =i | e(i) # 0}.
An expansion of v € A* is ¢, € (AU 0)* such that
if one restricts ¢, to its support one obtains v. An
embedding of v into w = w(1)...w(n) is an expan-
sion ey = €y(1)...€y(n) of v such that

ev(1) = w(2) for all i € Supp ey.

Note that v < w in A* iff there is an embedding ey
of v into w.

EX. In the previous example, the expansion of v
corresponding to the given subword of w is just
ev—=a 0b0O00O05ba.



Given a word w = w(1l)...w(n) then a run of a’s
in w is @ maximal interval of indices [r, s] such that

wr)=wlr+1)=---=w(s) = a.

EX. w=aabbbabahasrunsofa’s: [1,2], [6,6],
[8,8]; and runs of b's: [3,5] and [7,7].

An embedding ¢, of v into w is normal if for every
a € A and every run [r,s] of a's we have

(r,s] C Supp ey.
EX. Inw=aabbbabaany normal embedding
must contain the elements in blue. So there are

two normal embeddings of v = a b b a, namely
v =0a0bbalO0O0and ey =0a0bb0OoOa.

Theorem 2 (Bjorner) In A* we have
(v, w) = (=)= ()
[

where |w| is the length of w and (E‘j)n is the number
of normal embeddings of v in w.

n

Ex. We have
n(abba, aabbbaba) = (—1)8~ 4.2 = 2.



3. Layered permutations

Let P denote the positive integers. Let &,, denote
the symmetric group on [n]. Then m € &, is layered
if m has the form

rT=a(a—1) ... 1b(b-1) ...(a+1) ...

Let £ be the set of layered permutations partially
ordered by pattern containment. Then there is a
bijection £ < P* given by # < p = p(1)...p(k)
where the p(i) are the layer lengths of w. Under
this bijection, the partial order becomes p < ¢q iff
there is an expansion ¢, of p which has length |q]
and satisfies

ep(i) < q(7) for all 1 <i <|q|.

Call such an expansion an embedding of p in q.

EX. Iftr=32154ando=43216587 then
one occurrence of 7w in o is given by the green num-
bersinoc=43216587. InP* we have 7w and
o corresponding top =3 2 and g =4 2 2, respec-
tively. And the occurrence of p in g corresponds to
ep =3 0 2.



An embedding €, of p in ¢ € &y is normal if
1. For all 2z, 1 <17 <mn, we have
ep(i) = q(i), q(i) — 1, or 0.
2. For every k£ € P and every run [r,s] of k's
(@) (r,s] CSuppeyp if k=1,
(b) 7 € Suppep if k> 1.

Ex. Ing=221113 3 then any normal em-
bedding must support the elements in blue. So
there are two normal embeddings of p =211 1 3,
namely e, =2101130ande=2011130.

The sign of a normal embedding ¢, of pin g is
(_1)# of i where ep(i) =q(i) — 1
The exponent is the defect d(ep).

Theorem 3 (S-V) In £ we have
up,q) = > (~1)%)
€p

summed over all normal embeddings e, of p in q.

EXx. We have
1(21113,2211133) = (-1)2 + (-1)0 = 2.



4. Further work

A. Topology of £. If P is a poset then [x,z] C P
has order complex

A(x,z) ={c | cachainin (x,z2)}.

So A(xz, z) is a simplicial complex with reduced Eu-
ler characteristic

X(A(2,2) = Y (-1)'rk Hi(A(, 2)) = p(z, 2).
i>—1

Theorem 4 (Bjorner) In A*, the interval [v,w] is
lexicographically shellable for all v,w. And

w o
rk (A (v, w)) = { (), ifi=lwl=lvl-2,
0 else.

In £, [p,q] is not always shellable. But Forman
developed a discrete analogue of Morse Theory to
compute the homology of any CW-complex by col-
lapsing it onto a subcomplex of critical cells. Bab-
son & Hersh showed how any lexicographic ordering
of the maximal chains of an interval gives rise to
the critical cells of a Morse function.

Conjecture 5 In L there is a Morse function for
lp,q] with a single critical cell of dimension d(ep)
for each normal embedding e, of p in q.



B. Embedding orders. Let P be any poset. Take
O¢ P and set 0 < z for all x € P. Partially order P*
by p < ¢ in P* iff there is an expansion ¢, of length
lq| with

Call this the embedding order on P*.

Call P a rooted forest if each component of the
Hasse diagram of P is a tree with a unique minimal
element. Then there is a notion of normal embed-
ding in P* where minimal elements play the role
of ¢q(i7) = 1, nonminimal elements play the role of
g(2) > 1, and the element adjacent to ¢g(7) on then
unique ¢(i)-root path plays the role of ¢(7) — 1.

Conjecture 6 Let P be a rooted forest. Then in
P* we have

w(p,q) =3 (—1)%)

summed over all normal embeddings e, of p in q.

Note that if this conjecture is true then the theo-
rems for A* or £ are the special cases where P is
an antichain or a chain, respectively.



C. Other orders. Let © be the set of all permu-
tations ordered by pattern containment. What is

u(p,q) for p,q € 67

What about P* for any poset P (not just rooted
forests)? The simplest such poset is

v

a b

Let ¢/ denote the word in A* consisting of j copies
of a and similarly for the other elements of A. Let
Tn(xz) denote the nth Chebyshev polynomial of the
first kind.

Conjecture 7 If j,k > 0 then u(al,c*) is the coef-
ficient of =7 in Tj4,;(x).

10



