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1. The coordinate case

For ¢,j,n € Z>o we will use the notation
[n] = {1,2,...,n} and [i,j]={ii+1,...,5}.

Define the k-consecutive coordinate arrangement,
IC,,-1.» @s all subspaces of R™ of the form

:cz-::ci_|_1:...=:ci_|_k_1:O, 1§i§n—k—|—1.

The intersection lattice L(IC,,-x) is isomorphic to the
poset B,,:;. denerated by taking joins of intervals

[i,i + k — 1], 1<i<n—k+1

in the Boolean algebra of subsets of [n]. As an
example



1 (a). MoObius functions & NBB bases

Let (L,<) be a finite lattice with minimum 0, max-
imum 1, and join (least upper bound) operation V.
Let u: L — Z be L's MOobius function which is the
unique function satisfying

> wly) = b5,

y<x

Let A(L) be the atom set of L and put an arbitrary
partial order < on A(L). Then D C A(L) is bounded
below (BB) if, for every d € D there is an a € A(L)
such that

< d and

< \/D.
Then B C A(L) is an NBB base of z if x =\/ B and
B does not contain any D which is BB.

Theorem 1 (Blass-S) Let L be any finite lattice
and let < be any partial order on A(L). Then for
all x € L
u(a) =Y (-
B
where the sum is over all NBB bases B of x. n



D C A(L) is BB if for all d € D thereis a € A(L) s.t.
<d and <\/D.

Theorem 1 (Blass-S) For all x € L
u(z) =S (-8

B
where the sum is over all NBB bases B of . =®

[5]

[1, 4] [2, 5] [1, 3] [3, 5]
[1,3]a. Y »[3,5]

) [2,4]
(Bn1k7 S) (A(Bnk)aﬁ)

Note that from the definition of BB
1. No set containing a min. element of < is BB.
2. No set with at most one element is BB.

So for the given < in A(B,,-x), the only possible BB
set is {[1,3],[3,5]}. It is since <[1,3],[3,5] and
< [1,3] Vv [3,5] = [5].

T 0 [1, 3] [1,4] [1, 5]
NBB bases 0 {[1,3]} | {[1,3],[2,4]} | none
p(z) (-1)7] (=1)* (—1)° 0
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Corollary 2 (Greene)

Proof. Let the atoms of B,., be ai,...,a,_f41
where a; = [i,7 + k — 1]. Define < by

ai as ag  Og41 Q42 Gg44 Q45 ADk42

as Af+3

Let B be an NBB base of [n] if it exists. Then
a1 € B since a1 is the only atom containing 1. So
none of agz,...,ag41 iSin B since any of these atoms
forms a BB set with aq. The only available atom
remaining which contains k41 is a», forcing ar € B.
Iterating this argument we find that if B exists then
it must be unique and

B = {a,]_, an, a’k—|—27 a,k_|_3, .. }
Ifn=0o0or —1 (modk+ 1) then VB = [n] so we
have a base of even or odd cardinality, respectively.
Otherwise a,,_r4+1 ¢ B and since this is the only
atom containing n, B is not a base for [n]. =
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1 (b) Characteristic polynomials & lattice points

The characteristic polynomial of arrangement A is

x(A, )= 3 p(x)dmX,
XeL(A)

For example, if A={x =0, y =0} = K5:1 then

X|R2|z2=0]y=0
p(x) || 1 -1 -1
SO = 12—t—t+1 =

Theorem 3 (Crapo-Rota, Terao, Athanasiadis)
If A is a subspace arrangement in R"™ defined over Z
and hence over ¥y, then for large enough primes p

= F2\|JAl. =

A =Ko
pP=>5
7s ={-2,-1,0,1,2}

Then removing the lines of Ko.1 from the plane IE‘Q
leaves |]F‘2 \UK»2.1| = 16 lattice points. Also



Theorem 4 (Crapo-Rota, Terao, Athanasiadis)
If A is a subspace arrangement in R"™ defined over Z
and hence over I¥,, then for large enough primes p

= [Fp\JAl. m

(n)k = # of S C [n], |S| =1, no k consecutive.
(/

For example, counting

Proposition 5 We have
— n n—1
XKy t) = Z (;), ¢=D", (1)

(t — DIEL | (K, 1), (2)

Proof. Let p >> 0 and (z1,2,...,2n) € Fy \UK,1.
Then if ¢+ of the coordinates are to be zero, there
are (’Z)k ways to pick these z;. Then the remaining
n — 1 nonzero coordinates can be chosen in a total
of (p — 1)™ % ways. Summing on i, (1) follows.

A largest subset of [n] with no k consecutive is

[n] \ {k,2k,3k,...}.
So (”)k =0 ifn—1i<|n/k|. This gives (2). =
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The type A case

Define the k-consecutive type A arrangement, A, i,
as all subspaces of R™ of the form

Ty =Tj41 = ... = Titk_1, 1<i1<n—-k+1.

The intersection lattice L(A,,.;) is isomorphic to the
poset C,,-1. generated by taking joins of compositions

k4+14+--4+1,14+k+14+---4+1,...,14+---+1+F.

in the posets of all compositions of n ordered by
refinement. As an example



Define a lattice
By ={[r]\S : S € By}
ordered by reverse inclusion. Define two functions
o B, — B';kz:k and : B;;:k; — Cfn,+1:k:+1 by
S = [n]\S,
{ng,...,m}< = n1+Mmo—n1))+---+n+1-mn).
Then «, /3 are lattice isomorphisms so
Crn+1:k+1 = Bk
For example

[5] 0
{1,2,3,4} {2,345} {5} {1}
a
{1,2,3} (3,45}  {4,5) {1,2}
0 {1,2,3,4,5)
6
5+1 1+5
LA
44141 1+1+4

14+1414141+41



2 (a) Mobius functions again

Theorem 6 Let f(x) =3 ,>1 anx™, then we have

1 —

n

1 - f(z) n>0 \ni+no+--+n;=n

For the C,,.;, with k fixed, define my(z) = > p(n)z".
n>1

CU—CUk

1 — xk’

Corollary 7 We have mp(x) =
Equivalently, in C,,.;. we have
1 ifn=1 (modk),

uw(n]) =< -1 ifn=0 (modk),
0 else.

Proof. We let n =ny +---+n; € C,.; and define
Cpi={A€Cpt : AN} = Cnl:k X X Cnl:k- SO
p(n) = p(ny) ---p(ng) and

1
1 —my(x)

>l Y p(m)|z" (Theorem 6)
n>0 nECnik

= 14+z+a+ -+
since the inner sum is 1 or O depending on whether
0 =1 or notin C,.;. Solving for my(z), simplifying,
& taking the coefficient of 2™ finishes the proof. =
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2 (b) Characteristic polynomials again
If S€ B,,_1-1t_1 then pa(S) € C,,- and
dim fa(S) =1+ dim S.
Corollary 8 We have
X(Apkrt) = tx(Kp—1:5-1,1)
=2 ("7h) _-nrih .

. k—1

()i tt-1)@C-2)--- @ —-i+1),

Sp(n i) = # of partitions By/.../B; of [n], no
B; containing k consecutive integers.
For example, counting

Proposition 9 We have
X(Ap:kst) =D Sp(n 1 9)(t);.
i

Proof. Let p >> 0 and x € F; \U A,,;;.. If x contains
¢ different coordinates, then there are (p); ways to
pick the values to be used and Si(n : i) ways to
distribute these values among the coordinates. m

Note that Sip(n :4) > 0 for i > 1 so no nice divisibility
relation can be derived.
11



3. Comments & open problems

a. Coefficients. (Z’)k and Si(n : i) have interesting
properties. For example we have

(j)k — (?Z) and Si(n i) = S(n,k) for 0 <n < k.
For the (’Z)k and small k

(@)1 = ;0 (Kronecker),

1

(i), = (")
172 ’ ’ . .
(s = ;(i—n”f—z) (o) + (imms) (2) (2 3).
We also have the recursion
— k-1 —1 —1
)+ ) =03 ), +G )
To prove this, consider
([?])k = {S C [n]:|S| =14, no k consecutive} = S1WUS5

where S; = {S ¢ <[";]>k

> n¢g S} Also
<[?’Z—_11])k =TT
where 71 ={T € ([’?:]Ll])k  {n—-k+1,...,n} £ T}.

7

Then there are bijections

Sie (M) Sem, (MY 0T w

1
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b. Topology. Let S? be the sphere of dimension
d and let A(L) be the order complex of lattice L.
Using non-pure lexicographic shellings Bjorner and
Wachs proved

Theorem 10 We have

§2(n=1)/k=2 jf n =1 (modk),
A(Cpip) ~{ §2n/k=3 ifn=0 (modk),
point else. =n

A subset of an NBB set is NBB, so let NBB(L)
be the simplicial complex of NBB bases of all of
r € L,x # 1. Segev has shown

Theorem 11 We have

A(L) ~NBB(L). =

It would be interesting to derive Theorem 10 from
Theorem 11. This is non-trivial since the NBB sets
of L do not form a matroid.
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One can obtain a basis for the homology of a ge-
ometric lattice L as follows. Given an NBC base
B = {aj,an,...,ap} for 1 let

PB — Z (_1)7r[a'7r17 Arivr2y -+« a”fl'l\/"-\/ﬂ'(n—l)]'
77667),

For example, let L = B3 (Boolean algebra) and also
let B ={{1}, {2}, {3}}. Then

T oL € (1,2) (1,3) (1,2,3)
[1,12]-[2,12]—[3, 23] +(2, 23]
[1,12]4[12, 2]+([2, 23]+[23, 3]

PB

so dpp = 0.

Theorem 12 (Bjorner) If L is a geometric lattice
of rank n then

{pp | B is an NBC base of 1}

is a basis for H,,_>(AL,Z), the only non-zero ho-
mology group. |

Is there an NBB analog of this result?
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c. Other types. We can define k-consecutive analogs
for other Coxeter arrangements as has been done by
Bjorner and Sagan in the k-equal case. For exam-
ple, the type B arrangement is B,,-; with subspaces

{exi= ... =€qp-1Ti4p-1 |1 <i<n—-k+1}
Uz; =0[1<5 <n}

Theorem 13 We have
> x(L(Bpp), q)z"

n>0
14 (@=De@-2"1a")
o 1—2z— (q—3)z(1l — 2k—1gk-1)’
In particular for k = 2

no_ (¢ — 1z
ngox(L(Bn:z),q)w =1t 5, "

The Mobius function of L(B,,-5) can be computed
using NBB bases and Zaslavsky's theory of signed
graphs.
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d. k-circular arrangements. Following a suggestion
of Athanasiadis, define the k-circular coordinate ar-
rangement, K%:k' as all subspaces of R"™ of the form

xi:xi+1=...=xi+k_1=0, 1§z§n

where the subscripts are taken modulo n. Then
L(KC?..) is isomorphic to the poset B>., generated
by taking joins of intervals

[i,i + k — 1], 1<i<nm

(i + k — 1 taken modulo n) in the Boolean algebra
of subsets of [n].

Proposition 14 In B°.,, n > k, we have

k.  ifn=0 (modk+ 1),
—1 else.

MMD={
and

(Kot =30 () (=)

]

where (?)Z is the number of S C [n],
no k circularly consecutive. n

S| =1, with
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