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Let
(ax) = ag, a1, az, ...

be a sequence of nonnegative reals, written (ax) > 0. We set
ax = 0 for k < 0. Call (ax) log-concave if

a2 > ay_13y,1 for all k.
Example. (3), (1), (3), ... is log-concave.
Define the L-operator on sequences by
L(ay) = (af — ax_18y41)-

So (ak) is log-concave iff L(ayx) is nonnegative. Call (ay)
infinitely log-concave if

L' (ay) is nonnegative for all i > 0.

Conjecture (Boros-Moll)
Sequence (g), (1), (3), - - - is infinitely log-concave for all n > 0.
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Call (ax) r-factor log-concave if
a2 > rax_jay41 forallk > 0. (1)

Want r > 1 so that if (ax) is r-factor log-concave, so is £(ax):

?
(a2 —ax_1ay11)? > r(aZ_; — ax_pax)(aZ,; — akak2)-

?
2 o A4
(r —1)ag_,af, +2ak 1818f < &g+
2 2
ray _oay (a1 — akax42) + rag_ ka2 -

>0

From (1): ax_1ax41 < aZ/r. Plug in above and drop > O terms:
Sosufficesr;—zl+3_l<:>r2 3r+1=0 « r =35,

2
Theorem
(i) If (ax) > O is r-factor log-concave, r = % sois L(ak).

(i) (5); (1), (5), ... is infinitely log-concave for n < 1450. O
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With more than one parameter, subscript £ with the one which
is varying.

Example. Ly (}) is for rows, £, (}) is for columns.

Also, let L(ax) be the kth term of L£(ax) and similarly with
subscripts.

Conjecture
The sequence (i), ., is infinitely log-concave for all k > 0.

Proposition
We have
1. (E)n>0 is infinitely log-concave for all k < 2,

2. E'n(ﬂ) is nonnegative for all k and fori < 4. O
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infinitely g-log-concave if £'(fx(q)) is g-nonnegative for i > 0.

Let(n]=1+qg+q°+---+g"* and { E ] _[k]'[[r?]lk]'
where [n]! = [1][2] - - - [n].
Theorem
Letn >2andk = [n/2]. Then

L2 ([ E D = —q""2 + higher terms. O

Conjecture

The sequence ([ ]), ., is infinitely g-log-concave for all k > 0.
_ ~l—n 3—n n-1 n _ <n>!

Let(n) =g "+g>"+---4+q and <k>_<k)!<n—k>!

where (n)! = (1)(2) ---(n).

Conjecture

Sequences ((})), .o and ({)), -, are infinitely g-log-concave.
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Let x = {X1, X, ...} be a set of variables. The kth complete
homogeneous symmetric function is

hyx = hi(x) = sum of all terms of degree k in the x;.

Example. hy = X2 + X2 + X2 + -+ + XX + X1X3 + XoX3 + - - -

Let 1" denote the substitution
X1=Xo=...=Xy =1, Xpp1=Xpi2=...=0.
So

he(1") = # of ways to choose k of xy, ..., X, with repetition

~ (n+k-1

B n-1 )
It follows that (hi (1"))x>0 is @ column of Pascal’s triangle and
(hk(1"%))k>0 is a row. Define x-nonnegativity analogously to
g-nonnegativity.
Theorem
L'(hg(x)) is x-nonnegative for i < 3 but not for i = 4.
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If (ax) = ap,as, . ..,an is finite then let
plak] = ap +aix +--- +apx".
Suppose (ax) is nonnegative. It is well known that
plak] has only real roots = (ay) is log concave.

Example. If (ax) = (g), (1), .-, (}) then p[ay] = (1 + x)" has

only real roots. It follows that (3), (1), ..., () is log-concave.
Conjecture (M-S, Stanley, Fisk)
Suppose (ax) = ap, as, . . ., &n IS Nonnegative. Then

p[ak] has only real roots = p[L(ax)] has only real roots.
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