Infinite log-concavity

Peter R. W. McNamara Department of Mathematics, Bucknell University, Lewisburg, PA 17837, USA, peter.mcnamara@bucknell.edu

and

Bruce E. Sagan

Department of Mathematics, Michigan State University, East Lansing, MI 48824-1027, sagan@math.msu.edu www.math.msu.edu/~sagan

October 17, 2008

(ロ) (同) (三) (三) (三) (三) (○) (○)

The Boros-Moll Conjecture

Columns

q-analogues

Symmetric functions

Real roots

Outline

The Boros-Moll Conjecture

Columns

q-analogues

Symmetric functions

Real roots

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

$$(a_k) = a_0, a_1, a_2, \ldots$$

be a sequence of nonnegative reals, written $(a_k) \ge 0$.

$$(a_k) = a_0, a_1, a_2, \ldots$$

be a sequence of nonnegative reals, written $(a_k) \ge 0$. We set $a_k = 0$ for k < 0.

$$(a_k) = a_0, a_1, a_2, \ldots$$

be a sequence of nonnegative reals, written $(a_k) \ge 0$. We set $a_k = 0$ for k < 0. Call (a_k) *log-concave* if

$$a_k^2 \ge a_{k-1}a_{k+1}$$
 for all k .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$(a_k) = a_0, a_1, a_2, \ldots$$

be a sequence of nonnegative reals, written $(a_k) \ge 0$. We set $a_k = 0$ for k < 0. Call (a_k) *log-concave* if

$$a_k^2 \ge a_{k-1}a_{k+1}$$
 for all k .

Example. $\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \dots$ is log-concave.

$$(a_k) = a_0, a_1, a_2, \ldots$$

be a sequence of nonnegative reals, written $(a_k) \ge 0$. We set $a_k = 0$ for k < 0. Call (a_k) *log-concave* if

$$a_k^2 \ge a_{k-1}a_{k+1}$$
 for all k .

Example. $\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \dots$ is log-concave.

Define the \mathcal{L} -operator on sequences by

$$\mathcal{L}(\boldsymbol{a}_k) = (\boldsymbol{a}_k^2 - \boldsymbol{a}_{k-1} \boldsymbol{a}_{k+1}).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$(a_k) = a_0, a_1, a_2, \ldots$$

be a sequence of nonnegative reals, written $(a_k) \ge 0$. We set $a_k = 0$ for k < 0. Call (a_k) *log-concave* if

$$a_k^2 \ge a_{k-1}a_{k+1}$$
 for all k .

Example. $\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \dots$ is log-concave.

Define the \mathcal{L} -operator on sequences by

$$\mathcal{L}(a_k) = (a_k^2 - a_{k-1}a_{k+1}).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

So (a_k) is log-concave iff $\mathcal{L}(a_k)$ is nonnegative.

$$(a_k) = a_0, a_1, a_2, \ldots$$

be a sequence of nonnegative reals, written $(a_k) \ge 0$. We set $a_k = 0$ for k < 0. Call (a_k) *log-concave* if

$$a_k^2 \ge a_{k-1}a_{k+1}$$
 for all k .

Example. $\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \dots$ is log-concave.

Define the \mathcal{L} -operator on sequences by

$$\mathcal{L}(\boldsymbol{a}_k) = (\boldsymbol{a}_k^2 - \boldsymbol{a}_{k-1} \boldsymbol{a}_{k+1}).$$

So (a_k) is log-concave iff $\mathcal{L}(a_k)$ is nonnegative. Call (a_k) *infinitely log-concave* if

 $\mathcal{L}^{i}(a_{k})$ is nonnegative for all $i \geq 0$.

(日) (日) (日) (日) (日) (日) (日)

$$(a_k) = a_0, a_1, a_2, \ldots$$

be a sequence of nonnegative reals, written $(a_k) \ge 0$. We set $a_k = 0$ for k < 0. Call (a_k) *log-concave* if

$$a_k^2 \ge a_{k-1}a_{k+1}$$
 for all k .

Example. $\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \dots$ is log-concave.

Define the \mathcal{L} -operator on sequences by

$$\mathcal{L}(a_k) = (a_k^2 - a_{k-1}a_{k+1}).$$

So (a_k) is log-concave iff $\mathcal{L}(a_k)$ is nonnegative. Call (a_k) *infinitely log-concave* if

 $\mathcal{L}^{i}(a_{k})$ is nonnegative for all $i \geq 0$.

Conjecture (Boros-Moll) Sequence $\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \ldots$ is infinitely log-concave for all $n \ge 0$.

$$a_k^2 \ge ra_{k-1}a_{k+1} \text{ for all } k \ge 0. \tag{1}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$a_k^2 \ge ra_{k-1}a_{k+1} \text{ for all } k \ge 0. \tag{1}$$

Want r > 1 so that if (a_k) is *r*-factor log-concave, so is $\mathcal{L}(a_k)$:

$$a_k^2 \ge ra_{k-1}a_{k+1} \text{ for all } k \ge 0. \tag{1}$$

Want r > 1 so that if (a_k) is *r*-factor log-concave, so is $\mathcal{L}(a_k)$:

$$(a_k^2 - a_{k-1}a_{k+1})^2 \stackrel{?}{\geq} r(a_{k-1}^2 - a_{k-2}a_k)(a_{k+1}^2 - a_ka_{k+2}).$$

$$a_k^2 \ge ra_{k-1}a_{k+1} \text{ for all } k \ge 0. \tag{1}$$

(ロ) (型) (E) (E) (E) (O)(()

Want r > 1 so that if (a_k) is *r*-factor log-concave, so is $\mathcal{L}(a_k)$:

$$(a_{k}^{2}-a_{k-1}a_{k+1})^{2} \stackrel{?}{\geq} r(a_{k-1}^{2}-a_{k-2}a_{k})(a_{k+1}^{2}-a_{k}a_{k+2}).$$

$$(r-1)a_{k-1}^{2}a_{k+1}^{2}+2a_{k-1}a_{k+1}a_{k}^{2} \stackrel{?}{\leq} a_{k}^{4}+$$

$$\underbrace{ra_{k-2}a_{k}(a_{k+1}^{2}-a_{k}a_{k+2})+ra_{k-1}^{2}a_{k}a_{k+2}}_{>0}.$$

$$a_k^2 \ge ra_{k-1}a_{k+1} \text{ for all } k \ge 0. \tag{1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Want r > 1 so that if (a_k) is *r*-factor log-concave, so is $\mathcal{L}(a_k)$:

$$(a_{k}^{2}-a_{k-1}a_{k+1})^{2} \stackrel{?}{\geq} r(a_{k-1}^{2}-a_{k-2}a_{k})(a_{k+1}^{2}-a_{k}a_{k+2}).$$

$$(r-1)a_{k-1}^{2}a_{k+1}^{2}+2a_{k-1}a_{k+1}a_{k}^{2} \stackrel{?}{\leq} a_{k}^{4}+$$

$$\underbrace{ra_{k-2}a_{k}(a_{k+1}^{2}-a_{k}a_{k+2})+ra_{k-1}^{2}a_{k}a_{k+2}}_{\geq 0}.$$

From (1): $a_{k-1}a_{k+1} \le a_k^2/r$.

$$a_k^2 \ge ra_{k-1}a_{k+1} \text{ for all } k \ge 0. \tag{1}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Want r > 1 so that if (a_k) is *r*-factor log-concave, so is $\mathcal{L}(a_k)$:

$$(a_{k}^{2}-a_{k-1}a_{k+1})^{2} \stackrel{?}{\geq} r(a_{k-1}^{2}-a_{k-2}a_{k})(a_{k+1}^{2}-a_{k}a_{k+2}).$$

$$(r-1)a_{k-1}^{2}a_{k+1}^{2}+2a_{k-1}a_{k+1}a_{k}^{2} \stackrel{?}{\leq} a_{k}^{4}+$$

$$\underbrace{ra_{k-2}a_{k}(a_{k+1}^{2}-a_{k}a_{k+2})+ra_{k-1}^{2}a_{k}a_{k+2}}_{\geq 0}.$$

From (1): $a_{k-1}a_{k+1} \le a_k^2/r$. Plug in above and drop ≥ 0 terms:

$$\frac{r-1}{r^2}a_k^4+\frac{2}{r}a_k^4 \stackrel{?}{\leq} a_k^4.$$

$$a_k^2 \ge ra_{k-1}a_{k+1} \text{ for all } k \ge 0. \tag{1}$$

Want r > 1 so that if (a_k) is *r*-factor log-concave, so is $\mathcal{L}(a_k)$:

$$(a_{k}^{2}-a_{k-1}a_{k+1})^{2} \stackrel{?}{\geq} r(a_{k-1}^{2}-a_{k-2}a_{k})(a_{k+1}^{2}-a_{k}a_{k+2}).$$

$$(r-1)a_{k-1}^{2}a_{k+1}^{2}+2a_{k-1}a_{k+1}a_{k}^{2} \stackrel{?}{\leq} a_{k}^{4}+$$

$$\underbrace{ra_{k-2}a_{k}(a_{k+1}^{2}-a_{k}a_{k+2})+ra_{k-1}^{2}a_{k}a_{k+2}}_{\geq 0}.$$

From (1): $a_{k-1}a_{k+1} \le a_k^2/r$. Plug in above and drop ≥ 0 terms:

$$\frac{r-1}{r^2}a_k^4+\frac{2}{r}a_k^4 \stackrel{?}{\leq} a_k^4.$$

So suffices $\frac{r-1}{r^2} + \frac{2}{r} = 1$

$$a_k^2 \ge ra_{k-1}a_{k+1} \text{ for all } k \ge 0. \tag{1}$$

Want r > 1 so that if (a_k) is *r*-factor log-concave, so is $\mathcal{L}(a_k)$:

$$(a_{k}^{2}-a_{k-1}a_{k+1})^{2} \stackrel{?}{\geq} r(a_{k-1}^{2}-a_{k-2}a_{k})(a_{k+1}^{2}-a_{k}a_{k+2}).$$

$$(r-1)a_{k-1}^{2}a_{k+1}^{2}+2a_{k-1}a_{k+1}a_{k}^{2} \stackrel{?}{\leq} a_{k}^{4}+$$

$$\underbrace{ra_{k-2}a_{k}(a_{k+1}^{2}-a_{k}a_{k+2})+ra_{k-1}^{2}a_{k}a_{k+2}}_{\geq 0}.$$

From (1): $a_{k-1}a_{k+1} \le a_k^2/r$. Plug in above and drop ≥ 0 terms:

$$\frac{r-1}{r^2}a_k^4+\frac{2}{r}a_k^4 \stackrel{?}{\leq} a_k^4.$$

So suffices $\frac{r-1}{r^2} + \frac{2}{r} = 1 \iff r^2 - 3r + 1 = 0$

$$a_k^2 \ge ra_{k-1}a_{k+1} \text{ for all } k \ge 0. \tag{1}$$

Want r > 1 so that if (a_k) is *r*-factor log-concave, so is $\mathcal{L}(a_k)$:

$$(a_{k}^{2}-a_{k-1}a_{k+1})^{2} \stackrel{?}{\geq} r(a_{k-1}^{2}-a_{k-2}a_{k})(a_{k+1}^{2}-a_{k}a_{k+2}).$$

$$(r-1)a_{k-1}^{2}a_{k+1}^{2}+2a_{k-1}a_{k+1}a_{k}^{2} \stackrel{?}{\leq} a_{k}^{4}+$$

$$\underbrace{ra_{k-2}a_{k}(a_{k+1}^{2}-a_{k}a_{k+2})+ra_{k-1}^{2}a_{k}a_{k+2}}_{\geq 0}.$$

From (1): $a_{k-1}a_{k+1} \le a_k^2/r$. Plug in above and drop ≥ 0 terms:

$$\frac{r-1}{r^2}a_k^4+\frac{2}{r}a_k^4 \leq a_k^4.$$

So suffices $\frac{r-1}{r^2} + \frac{2}{r} = 1 \iff r^2 - 3r + 1 = 0 \iff r = \frac{3\pm\sqrt{5}}{2}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

$$a_k^2 \ge ra_{k-1}a_{k+1} \text{ for all } k \ge 0. \tag{1}$$

Want r > 1 so that if (a_k) is *r*-factor log-concave, so is $\mathcal{L}(a_k)$:

$$(a_{k}^{2}-a_{k-1}a_{k+1})^{2} \stackrel{?}{\geq} r(a_{k-1}^{2}-a_{k-2}a_{k})(a_{k+1}^{2}-a_{k}a_{k+2}).$$

$$(r-1)a_{k-1}^{2}a_{k+1}^{2}+2a_{k-1}a_{k+1}a_{k}^{2} \stackrel{?}{\leq} a_{k}^{4}+$$

$$\underbrace{ra_{k-2}a_{k}(a_{k+1}^{2}-a_{k}a_{k+2})+ra_{k-1}^{2}a_{k}a_{k+2}}_{\geq 0}.$$

From (1): $a_{k-1}a_{k+1} \le a_k^2/r$. Plug in above and drop ≥ 0 terms:

$$\frac{r-1}{r^2}a_k^4+\frac{2}{r}a_k^4\stackrel{?}{\leq}a_k^4.$$

So suffices $\frac{r-1}{r^2} + \frac{2}{r} = 1 \iff r^2 - 3r + 1 = 0 \iff r = \frac{3\pm\sqrt{5}}{2}.$

Theorem

(i) If $(a_k) \ge 0$ is r-factor log-concave, $r = \frac{3+\sqrt{5}}{2}$, so is $\mathcal{L}(a_k)$.

$$a_k^2 \ge ra_{k-1}a_{k+1} \text{ for all } k \ge 0. \tag{1}$$

Want r > 1 so that if (a_k) is *r*-factor log-concave, so is $\mathcal{L}(a_k)$:

$$(a_{k}^{2}-a_{k-1}a_{k+1})^{2} \stackrel{?}{\geq} r(a_{k-1}^{2}-a_{k-2}a_{k})(a_{k+1}^{2}-a_{k}a_{k+2}).$$

$$(r-1)a_{k-1}^{2}a_{k+1}^{2}+2a_{k-1}a_{k+1}a_{k}^{2} \stackrel{?}{\leq} a_{k}^{4}+$$

$$\underbrace{ra_{k-2}a_{k}(a_{k+1}^{2}-a_{k}a_{k+2})+ra_{k-1}^{2}a_{k}a_{k+2}}_{\geq 0}.$$

From (1): $a_{k-1}a_{k+1} \le a_k^2/r$. Plug in above and drop ≥ 0 terms:

$$\frac{r-1}{r^2}a_k^4+\frac{2}{r}a_k^4\stackrel{?}{\leq}a_k^4.$$

So suffices $\frac{r-1}{r^2} + \frac{2}{r} = 1 \iff r^2 - 3r + 1 = 0 \iff r = \frac{3\pm\sqrt{5}}{2}$.

Theorem

(i) If $(a_k) \ge 0$ is r-factor log-concave, $r = \frac{3+\sqrt{5}}{2}$, so is $\mathcal{L}(a_k)$. (ii) $\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \ldots$ is infinitely log-concave for $n \le 1450$.

Outline

The Boros-Moll Conjecture

Columns

q-analogues

Symmetric functions

Real roots

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ● ●

(ロ) (型) (E) (E) (E) (O)(()

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example. $\mathcal{L}_k\binom{n}{k}$ is for rows, $\mathcal{L}_n\binom{n}{k}$ is for columns.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Example. $\mathcal{L}_k\binom{n}{k}$ is for rows, $\mathcal{L}_n\binom{n}{k}$ is for columns.

Also, let $L(a_k)$ be the *k*th term of $\mathcal{L}(a_k)$ and similarly with subscripts.

Example. $\mathcal{L}_k \binom{n}{k}$ is for rows, $\mathcal{L}_n \binom{n}{k}$ is for columns.

Also, let $L(a_k)$ be the *k*th term of $\mathcal{L}(a_k)$ and similarly with subscripts.

Conjecture

The sequence $\binom{n}{k}_{n\geq 0}$ is infinitely log-concave for all $k\geq 0$.

(日) (日) (日) (日) (日) (日) (日)

Example. $\mathcal{L}_k \binom{n}{k}$ is for rows, $\mathcal{L}_n \binom{n}{k}$ is for columns.

Also, let $L(a_k)$ be the *k*th term of $\mathcal{L}(a_k)$ and similarly with subscripts.

Conjecture The sequence $\binom{n}{k}_{n\geq 0}$ is infinitely log-concave for all $k \geq 0$.

Proposition

We have

1. $\binom{n}{k}_{n\geq 0}$ is infinitely log-concave for all $k\leq 2$,

Example. $\mathcal{L}_k\binom{n}{k}$ is for rows, $\mathcal{L}_n\binom{n}{k}$ is for columns.

Also, let $L(a_k)$ be the *k*th term of $\mathcal{L}(a_k)$ and similarly with subscripts.

Conjecture The sequence $\binom{n}{k}_{n>0}$ is infinitely log-concave for all $k \ge 0$.

Proposition

We have

1. $\binom{n}{k}_{n\geq 0}$ is infinitely log-concave for all $k\leq 2$,

2. $\mathcal{L}_n^i \binom{n}{k}$ is nonnegative for all k and for $i \leq 4$.

Outline

The Boros-Moll Conjecture

Columns

q-analogues

Symmetric functions

Real roots

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ● ●

A polynomial f(q) is *q*-nonnegative if $f(q) \in \mathbb{R}_{\geq 0}[q]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Let $[n] = 1 + q + q^2 + \dots + q^{n-1}$

Let $[n] = 1 + q + q^2 + \dots + q^{n-1}$ and $\begin{bmatrix} n \\ k \end{bmatrix} = \frac{[n]!}{[k]![n-k]!}$ where $[n]! = [1][2] \dots [n]$.

(ロ) (同) (三) (三) (三) (○) (○)

Let $[n] = 1 + q + q^2 + \dots + q^{n-1}$ and $\begin{bmatrix} n \\ k \end{bmatrix} = \frac{[n]!}{[k]![n-k]!}$ where $[n]! = [1][2] \cdots [n]$. Theorem Let $n \ge 2$ and $k = \lfloor n/2 \rfloor$. Then $L_k^2 \left(\begin{bmatrix} n \\ k \end{bmatrix} \right) = -q^{n-2} + higher terms$. \Box

(ロ) (同) (三) (三) (三) (○) (○)

Let $[n] = 1 + q + q^2 + \dots + q^{n-1}$ and $\begin{bmatrix} n \\ k \end{bmatrix} = \frac{[n]!}{[k]![n-k]!}$ where $[n]! = [1][2] \cdots [n]$. Theorem Let $n \ge 2$ and $k = \lfloor n/2 \rfloor$. Then $L_k^2 \left(\begin{bmatrix} n \\ k \end{bmatrix} \right) = -q^{n-2} + higher terms$. \Box

Conjecture

The sequence $\binom{n}{k}_{n\geq 0}$ is infinitely q-log-concave for all $k\geq 0$.

・ロト・日本・日本・日本・日本

A polynomial f(q) is *q*-nonnegative if $f(q) \in \mathbb{R}_{\geq 0}[q]$. Call $(f_k(q))$ infinitely *q*-log-concave if $\mathcal{L}^i(f_k(q))$ is *q*-nonnegative for $i \geq 0$.

Let $[n] = 1 + q + q^2 + \dots + q^{n-1}$ and $\begin{bmatrix} n \\ k \end{bmatrix} = \frac{[n]!}{[k]![n-k]!}$ where $[n]! = [1][2] \cdots [n]$. Theorem Let $n \ge 2$ and $k = \lfloor n/2 \rfloor$. Then $L_k^2 \left(\begin{bmatrix} n \\ k \end{bmatrix} \right) = -q^{n-2} + higher terms.$

Conjecture

The sequence $\binom{n}{k}_{n\geq 0}$ is infinitely q-log-concave for all $k \geq 0$.

Let $\langle n \rangle = q^{1-n} + q^{3-n} + \dots + q^{n-1}$

A polynomial f(q) is *q*-nonnegative if $f(q) \in \mathbb{R}_{\geq 0}[q]$. Call $(f_k(q))$ infinitely *q*-log-concave if $\mathcal{L}^i(f_k(q))$ is *q*-nonnegative for $i \geq 0$.

Let $[n] = 1 + q + q^2 + \dots + q^{n-1}$ and $\begin{bmatrix} n \\ k \end{bmatrix} = \frac{[n]!}{[k]![n-k]!}$ where $[n]! = [1][2] \cdots [n]$. Theorem Let $n \ge 2$ and $k = \lfloor n/2 \rfloor$. Then $L_k^2 \left(\begin{bmatrix} n \\ k \end{bmatrix} \right) = -q^{n-2} + higher terms.$

Conjecture

The sequence $\binom{n}{k}_{n\geq 0}$ is infinitely q-log-concave for all $k \geq 0$. Let $\langle n \rangle = q^{1-n} + q^{3-n} + \dots + q^{n-1}$ and $\binom{n}{k} = \frac{\langle n \rangle!}{\langle k \rangle! \langle n-k \rangle!}$

where $\langle n \rangle ! = \langle 1 \rangle \langle 2 \rangle \cdots \langle n \rangle$.

A polynomial f(q) is *q*-nonnegative if $f(q) \in \mathbb{R}_{\geq 0}[q]$. Call $(f_k(q))$ infinitely *q*-log-concave if $\mathcal{L}^i(f_k(q))$ is *q*-nonnegative for $i \geq 0$.

Let $[n] = 1 + q + q^2 + \dots + q^{n-1}$ and $\begin{bmatrix} n \\ k \end{bmatrix} = \frac{[n]!}{[k]![n-k]!}$ where $[n]! = [1][2] \cdots [n]$. Theorem Let $n \ge 2$ and $k = \lfloor n/2 \rfloor$. Then $L_k^2 \left(\begin{bmatrix} n \\ k \end{bmatrix} \right) = -q^{n-2} + higher terms.$

Conjecture

The sequence $\binom{n}{k}_{n>0}$ is infinitely q-log-concave for all $k \ge 0$.

Let
$$\langle n \rangle = q^{1-n} + q^{3-n} + \dots + q^{n-1}$$
 and $\begin{pmatrix} n \\ k \end{pmatrix} = \frac{\langle n \rangle!}{\langle k \rangle! \langle n-k \rangle!}$

where
$$\langle n \rangle ! = \langle 1 \rangle \langle 2 \rangle \cdots \langle n \rangle$$
.

Conjecture

Sequences $\left(\begin{pmatrix} n \\ k \end{pmatrix} \right)_{k \ge 0}$ and $\left(\begin{pmatrix} n \\ k \end{pmatrix} \right)_{n \ge 0}$ are infinitely q-log-concave.

Outline

The Boros-Moll Conjecture

Columns

q-analogues

Symmetric functions

Real roots

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Let $\mathbf{x} = \{x_1, x_2, \ldots\}$ be a set of variables.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $h_k = h_k(\mathbf{x}) =$ sum of all terms of degree k in the x_i .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $h_k = h_k(\mathbf{x}) =$ sum of all terms of degree k in the x_i .

Example. $h_2 = x_1^2 + x_2^2 + x_3^2 + \dots + x_1 x_2 + x_1 x_3 + x_2 x_3 + \dots$

 $h_k = h_k(\mathbf{x}) =$ sum of all terms of degree k in the x_i .

Example. $h_2 = x_1^2 + x_2^2 + x_3^2 + \dots + x_1 x_2 + x_1 x_3 + x_2 x_3 + \dots$

Let 1^{*n*} denote the substitution

$$x_1 = x_2 = \ldots = x_n = 1, \quad x_{n+1} = x_{n+2} = \ldots = 0.$$

 $h_k = h_k(\mathbf{x}) =$ sum of all terms of degree k in the x_i .

Example. $h_2 = x_1^2 + x_2^2 + x_3^2 + \dots + x_1 x_2 + x_1 x_3 + x_2 x_3 + \dots$

Let 1ⁿ denote the substitution

$$x_1 = x_2 = \ldots = x_n = 1, \quad x_{n+1} = x_{n+2} = \ldots = 0.$$

So

 $h_k(1^n) = \#$ of ways to choose k of x_1, \ldots, x_n with repetition

 $h_k = h_k(\mathbf{x}) =$ sum of all terms of degree k in the x_i .

Example. $h_2 = x_1^2 + x_2^2 + x_3^2 + \dots + x_1 x_2 + x_1 x_3 + x_2 x_3 + \dots$

Let 1ⁿ denote the substitution

$$x_1 = x_2 = \ldots = x_n = 1, \quad x_{n+1} = x_{n+2} = \ldots = 0.$$

So

$$h_k(1^n) = \#$$
 of ways to choose k of x_1, \ldots, x_n with repetition
= $\binom{n+k-1}{n-1}$.

 $h_k = h_k(\mathbf{x}) =$ sum of all terms of degree k in the x_i .

Example. $h_2 = x_1^2 + x_2^2 + x_3^2 + \dots + x_1 x_2 + x_1 x_3 + x_2 x_3 + \dots$

Let 1ⁿ denote the substitution

$$x_1 = x_2 = \ldots = x_n = 1, \quad x_{n+1} = x_{n+2} = \ldots = 0.$$

So

$$h_k(1^n) = \#$$
 of ways to choose k of x_1, \ldots, x_n with repetition
= $\binom{n+k-1}{n-1}$.

It follows that $(h_k(1^n))_{k\geq 0}$ is a column of Pascal's triangle

 $h_k = h_k(\mathbf{x}) =$ sum of all terms of degree k in the x_i .

Example. $h_2 = x_1^2 + x_2^2 + x_3^2 + \dots + x_1 x_2 + x_1 x_3 + x_2 x_3 + \dots$

Let 1ⁿ denote the substitution

$$x_1 = x_2 = \ldots = x_n = 1, \quad x_{n+1} = x_{n+2} = \ldots = 0.$$

So

$$h_k(1^n) = \#$$
 of ways to choose k of x_1, \ldots, x_n with repetition
= $\binom{n+k-1}{n-1}$.

It follows that $(h_k(1^n))_{k\geq 0}$ is a column of Pascal's triangle and $(h_k(1^{n-k}))_{k\geq 0}$ is a row.

 $h_k = h_k(\mathbf{x}) =$ sum of all terms of degree k in the x_i .

Example. $h_2 = x_1^2 + x_2^2 + x_3^2 + \dots + x_1 x_2 + x_1 x_3 + x_2 x_3 + \dots$

Let 1ⁿ denote the substitution

$$x_1 = x_2 = \ldots = x_n = 1, \quad x_{n+1} = x_{n+2} = \ldots = 0.$$

So

$$h_k(1^n) = \#$$
 of ways to choose k of x_1, \ldots, x_n with repetition
= $\binom{n+k-1}{n-1}$.

It follows that $(h_k(1^n))_{k\geq 0}$ is a column of Pascal's triangle and $(h_k(1^{n-k}))_{k\geq 0}$ is a row. Define **x**-nonnegativity analogously to *q*-nonnegativity.

 $h_k = h_k(\mathbf{x}) =$ sum of all terms of degree k in the x_i .

Example. $h_2 = x_1^2 + x_2^2 + x_3^2 + \dots + x_1 x_2 + x_1 x_3 + x_2 x_3 + \dots$

Let 1ⁿ denote the substitution

$$x_1 = x_2 = \ldots = x_n = 1, \quad x_{n+1} = x_{n+2} = \ldots = 0.$$

So

$$h_k(1^n) = \#$$
 of ways to choose k of x_1, \ldots, x_n with repetition
= $\binom{n+k-1}{n-1}$.

It follows that $(h_k(1^n))_{k\geq 0}$ is a column of Pascal's triangle and $(h_k(1^{n-k}))_{k\geq 0}$ is a row. Define **x**-nonnegativity analogously to *q*-nonnegativity.

Theorem

 $\mathcal{L}^{i}(h_{k}(\mathbf{x}))$ is **x**-nonnegative for $i \leq 3$ but not for i = 4.

Outline

The Boros-Moll Conjecture

Columns

q-analogues

Symmetric functions

Real roots

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$p[a_k] = a_0 + a_1x + \cdots + a_nx^n.$$

 $p[a_k] = a_0 + a_1 x + \cdots + a_n x^n.$

Suppose (a_k) is nonnegative. It is well known that

 $p[a_k]$ has only real roots $\implies (a_k)$ is log concave.

 $p[a_k] = a_0 + a_1 x + \cdots + a_n x^n.$

Suppose (a_k) is nonnegative. It is well known that

 $p[a_k]$ has only real roots $\implies (a_k)$ is log concave.

Example. If $(a_k) = \binom{n}{0}, \binom{n}{1}, \dots, \binom{n}{n}$

 $p[a_k] = a_0 + a_1 x + \cdots + a_n x^n.$

Suppose (a_k) is nonnegative. It is well known that

 $p[a_k]$ has only real roots $\implies (a_k)$ is log concave.

Example. If $(a_k) = \binom{n}{0}, \binom{n}{1}, \dots, \binom{n}{n}$ then $p[a_k] = (1 + x)^n$ has only real roots.

 $p[a_k] = a_0 + a_1 x + \cdots + a_n x^n.$

Suppose (a_k) is nonnegative. It is well known that

 $p[a_k]$ has only real roots $\implies (a_k)$ is log concave.

Example. If $(a_k) = \binom{n}{0}, \binom{n}{1}, \dots, \binom{n}{n}$ then $p[a_k] = (1 + x)^n$ has only real roots. It follows that $\binom{n}{0}, \binom{n}{1}, \dots, \binom{n}{n}$ is log-concave.

 $p[a_k] = a_0 + a_1 x + \cdots + a_n x^n.$

Suppose (a_k) is nonnegative. It is well known that

 $p[a_k]$ has only real roots $\implies (a_k)$ is log concave.

Example. If $(a_k) = \binom{n}{0}, \binom{n}{1}, \dots, \binom{n}{n}$ then $p[a_k] = (1 + x)^n$ has only real roots. It follows that $\binom{n}{0}, \binom{n}{1}, \dots, \binom{n}{n}$ is log-concave. Conjecture (M-S, Stanley, Fisk) Suppose $(a_k) = a_0, a_1, \dots, a_n$ is nonnegative. Then

 $p[a_k]$ has only real roots $\implies p[\mathcal{L}(a_k)]$ has only real roots.