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Let
(ak ) = a0, a1, a2, . . .

be a sequence of nonnegative reals, written (ak ) ≥ 0.

We set
ak = 0 for k < 0. Call (ak ) log-concave if

a2
k ≥ ak−1ak+1 for all k .

Example.
(n

0

)
,
(n

1

)
,
(n

2

)
, . . . is log-concave.

Define the L-operator on sequences by

L(ak ) = (a2
k − ak−1ak+1).

So (ak ) is log-concave iff L(ak ) is nonnegative. Call (ak )
infinitely log-concave if

Li(ak ) is nonnegative for all i ≥ 0.

Conjecture (Boros-Moll)
Sequence

(n
0

)
,
(n

1

)
,
(n

2

)
, . . . is infinitely log-concave for all n ≥ 0.
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Call (ak ) r -factor log-concave if

a2
k ≥ rak−1ak+1 for all k ≥ 0. (1)

Want r > 1 so that if (ak ) is r -factor log-concave, so is L(ak ):

(a2
k − ak−1ak+1)

2
?
≥ r(a2

k−1 − ak−2ak )(a2
k+1 − akak+2).

(r − 1)a2
k−1a2

k+1 + 2ak−1ak+1a2
k

?
≤ a4

k+

rak−2ak (a2
k+1 − akak+2) + ra2

k−1akak+2︸ ︷︷ ︸
≥0

.

From (1): ak−1ak+1 ≤ a2
k/r . Plug in above and drop ≥ 0 terms:

r − 1
r2 a4

k +
2
r

a4
k

?
≤ a4

k .

So suffices r−1
r2 + 2

r = 1 ⇐⇒ r2 − 3r + 1 = 0 ⇐⇒ r = 3±
√

5
2 .

Theorem
(i) If (ak ) ≥ 0 is r -factor log-concave, r = 3+

√
5

2 , so is L(ak ).

(ii)
(n

0

)
,
(n

1

)
,
(n

2

)
, . . . is infinitely log-concave for n ≤ 1450.
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With more than one parameter, subscript L with the one which
is varying.

Example. Lk
(n

k

)
is for rows, Ln

(n
k

)
is for columns.

Also, let L(ak ) be the k th term of L(ak ) and similarly with
subscripts.

Conjecture
The sequence

(n
k

)
n≥0 is infinitely log-concave for all k ≥ 0.

Proposition
We have

1.
(n

k

)
n≥0 is infinitely log-concave for all k ≤ 2,

2. Li
n

(n
k

)
is nonnegative for all k and for i ≤ 4.
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A polynomial f (q) is q-nonnegative if f (q) ∈ R≥0[q].

Call (fk (q))
infinitely q-log-concave if Li(fk (q)) is q-nonnegative for i ≥ 0.

Let [n] = 1 + q + q2 + · · ·+ qn−1 and
[

n
k

]
=

[n]!

[k ]![n − k ]!
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Let x = {x1, x2, . . .} be a set of variables.

The kth complete
homogeneous symmetric function is

hk = hk (x) = sum of all terms of degree k in the xi .

Example. h2 = x2
1 + x2

2 + x2
3 + · · ·+ x1x2 + x1x3 + x2x3 + · · ·

Let 1n denote the substitution

x1 = x2 = . . . = xn = 1, xn+1 = xn+2 = . . . = 0.

So

hk (1n) = # of ways to choose k of x1, . . . , xn with repetition

=

(
n + k − 1

n − 1

)
.

It follows that (hk (1n))k≥0 is a column of Pascal’s triangle and
(hk (1n−k ))k≥0 is a row. Define x-nonnegativity analogously to
q-nonnegativity.

Theorem
Li(hk (x)) is x-nonnegative for i ≤ 3 but not for i = 4.
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If (ak ) = a0, a1, . . . , an is finite then let

p[ak ] = a0 + a1x + · · ·+ anxn.

Suppose (ak ) is nonnegative. It is well known that

p[ak ] has only real roots =⇒ (ak ) is log concave.

Example. If (ak ) =
(n

0

)
,
(n

1

)
, . . . ,

(n
n

)
then p[ak ] = (1 + x)n has

only real roots. It follows that
(n

0

)
,
(n

1

)
, . . . ,

(n
n

)
is log-concave.

Conjecture (M-S, Stanley, Fisk)
Suppose (ak ) = a0, a1, . . . , an is nonnegative. Then

p[ak ] has only real roots =⇒ p[L(ak )] has only real roots.
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