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Let P be a finite poset (partially ordered set). The set of closed
intervals of P is

Int P = {[x , y ] : x ≤ y}.

The Möbius function of P, µ : Int P → Z, is defined recursively by∑
z∈[x ,y ]

µ(x , z) = δx ,y =

{
1 if x = y ,
0 else.

The Möbius function is an important invariant of any poset.
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Set A has a Kleene closure consisting of all finite words over A:

A∗ = {w = w(1) . . .w(n) : w(i) ∈ A for all i , n ≥ 0}.

A subword of w is v = w(i1) . . .w(ik) with i1 < · · · < ik .

Ex. w = aabba has subword v = abaEx. w = aabba has subword v = aba & embedding η = a00ba.
Subword order on A∗ has v ≤ w iff v is a subword of w .
Suppose 0 6∈ A. An embedding of v in w is η ∈ (A ∪ 0)∗ gotten
by zeroing out letters of w and leaving v .

∴ v ≤ w in A∗ iff there is an embedding of v in w .

A run in w is a maximal consecutive subword with all elements
equal. Normal embeddings can only zero out a letter if it is first
in a run (but not all such letters must be made zero).

Theorem (Björner)

If |w | denotes the length of w and v ≤ w in A∗ then

µ(v ,w) = (−1)|w |−|v |(# of normal embeddings of v in w).

Ex. w = aabba has runs aa, bb, and a. The only normal
embedding of v = aba is 0a0ba. ∴ µ(v ,w) = (−1)5−3 · 1 = 1.
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Call sequences of distinct integers π = π(1) . . . π(k) and
σ = σ(1) . . . σ(k) order isomorphic, π ∼= σ, if

π(i) < π(j) ⇐⇒ σ(i) < σ(j) for all i , j .

Ex. 132 ∼= 475 so σ = 6437125 contains π = 132.
Let Sn be the symmetric group on {1, . . . , n} and let S = ∪nSn.
Say σ ∈ Sn contains pattern π ∈ Sk if σ has a subword σ′ ∼= π.
Pattern order on S is π ≤ σ iff σ contains π.

Question (Wilf)

What is the Möbius function of S?

Call σ ∈ S layered with layer lengths `(σ) = (k , l , . . .) if

σ = k(k − 1) . . . 1(k + l)(k + l − 1) . . . k + 1 . . . .

Let L ⊂ S be the induced order on layered permutations.
Ex. We have that σ = 321|4|65 is layered with `(σ) = (3, 1, 2).

Also π = 21|43 is layered and π ≤ σ since `(π) = (2, 2) and
(2, 0, 2) ≤ (3, 1, 2) component-wise.
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What is the Möbius function of S?

Call σ ∈ S layered with layer lengths `(σ) = (k , l , . . .) if

σ = k(k − 1) . . . 1(k + l)(k + l − 1) . . . k + 1 . . . .
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Also π = 21|43 is layered and π ≤ σ since `(π) = (2, 2) and
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Let P be any poset.

Generalized subword order on P∗ has v ≤ w
iff there is a subword w(i1) . . .w(ik) of length |v | with

v(1) ≤P w(i1), . . . , v(k) ≤P w(ik).

Ex. 1. P = A an antichain =⇒ P∗ ∼= A∗ (ordinary subword).
2. P = P (positive integers) =⇒ P∗ ∼= L (layered).
One can generalize embeddings and normal embeddings to P∗.

Theorem (S. and Vatter)

Let P be a rooted forest. If v ≤ w in P∗ then

µ(v ,w) =
∑
η

(−1)d(η)

where the sum is over all normal embeddings η of v in w, and
d(η) is the number of indices i where w(i) covers η(i).

The smallest poset which is not a rooted forest is Λ = a

c

b

Theorem (conjecture: S. and Vatter, proof: Tomie)

If 0 ≤ i ≤ j , then in Λ∗ we have

µ(ai , c j) = coefficient of x j−i in Ti+j(x)

where Tn(x) is the nth Tchebyshev polynomial of the 1st kind.
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If P is any poset then let P0 be P with a new minimum element 0.

Let µ0 be the Möbius function of P0, Call P locally finite if #[a, b]
finite for all a ≤ b in P. All the previous results are corollaries of:

Theorem (McNamara and S.)

Let P be a poset such that P0 is locally finite. Then

µ(v ,w) =
∑
η

|w |∏
i=1

{
µ0(η(i),w(i)) + 1 if η(i) = 0 and w(i − 1) = w(i),
µ0(η(i),w(i)) else,

where the sum is over all embeddings η of v in w.

The proof uses discrete Morse theory and classical results about µ,



If P is any poset then let P0 be P with a new minimum element 0.
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µ(v ,w) =
∑
η

|w |∏
i=1

{
µ0(η(i),w(i)) + 1 if η(i) = 0 and w(i − 1) = w(i),
µ0(η(i),w(i)) else,

Corollary

If A is an antichain then in A∗

µ(v ,w) = (−1)|w |−|v |(# of normal embeddings of v in w).

Proof Claim η not normal iff (∃i : η(i) = 0 and w(i − 1) = w(i)).
Proof (∃i : η(i) = 0 and w(i − 1) = w(i)) iff there exists a 0 in
η not at the beginning of a run of w iff η not normal. (Claim)

Now A0 =

a b c · · ·

0
=⇒ µ0(η(i),w(i)) =

{
+1 if η(i) = w(i),
−1 if η(i) = 0.

If η not normal then, by the claim, there is a factor in the product
equal to µ0(η(i),w(i)) + 1 = µ0(0,w(i)) + 1 = −1 + 1 = 0.
If η is normal then, by the claim, every factor of the product is
from the “else” case giving (−1)# of η(i) = 0 = (−1)|w |−|v |.
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Elements x < y in a poset P determine the order complex ∆(x , y)
consisting of all chains in the open interval (x , y).

Proposition

If (x , y) is finite then

µ(x , y) = χ̃(∆(x , y))

where χ̃ is the reduced Euler characteristic.

If P is finite then x ∈ P has rank rk x which is that length of a
longest chain from a minimal element of P to x . The rank of P is

rkP = max
x∈P

(rk x).

For example, an antichain has rank 0.

Theorem (McNamara and S)

Let P be a poset with rkP ≤ 1. If v < w then ∆(v ,w) is
homotopic to a wedge of |µ(v ,w)| spheres all of dimension
|w | − |v | − 2.
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Open Questions



1. What can be said about the Möbius function of other intervals
in S (pattern order)?

There has been recent work by Tenner-
Steingŕımsson and by Burstein-Jeĺınek-Jeĺınkova-Steingŕımsson.

2. Ordinary factor order is given by v ≤ w if v is a subword of
consecutive letters in w . Björner determined the Möbius function
of ordinary factor order. Generalized factor order on P∗ for any
poset P can be defined analogously. Willenbring generalized
Björner’s result to rooted trees. Is there a formula for any P? Note
that Bernini-Ferrari-Steingŕımsson determined the Möbius function
of the consecutive pattern poset and S-Willenbring showed that
there is an intimate connection between this poset and ordinary
factor order.



1. What can be said about the Möbius function of other intervals
in S (pattern order)? There has been recent work by Tenner-
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of ordinary factor order. Generalized factor order on P∗ for any
poset P can be defined analogously. Willenbring generalized
Björner’s result to rooted trees. Is there a formula for any P? Note
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