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Let σ be a simplex and τ be a face of σ with dim τ = dimσ − 1.

A collapse is a strong deformation retract of σ onto ∂σ − int τ .
Ex.

σ
τ → →

Let ∆ be a simplicial complex. Denote the reduced homology
groups, Betti numbers, and Euler characteristic of ∆ by

H̃d (∆), β̃d (∆) = rk H̃d (∆), χ̃(∆) =
∑

d (−1)d β̃d (∆).

A Morse matching (MM) on ∆ is a matching of the simplices of
∆ such that, for every matched pair (σ, τ), the corresponding
collapses can all be done to form a new (cell) complex ∆c . The
unmatched simplices in ∆ are called critical and these are the
only ones surviving in ∆c . We also have ∆ ' ∆c , so
H̃d (∆) ∼= H̃d (∆c) for all d .

Theorem
Let ∆ have a MM with cd critical simplices of dimension d.

1. (Weak Morse inequalities) β̃d (∆) ≤ cd for all d.
2. χ̃(∆) =

∑
d (−1)dcd .
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Let P be a poset.

The Möbius function of [x , y ] ⊆ P is

µ(x , x) = 1, µ(x , y) = −
∑

x≤z<y

µ(x , z).

The order complex of [x , y ] is the abstract simplicial complex

∆(x , y) = {C : C is a chain in (x , y)}.

Theorem
µ(x , y) = χ̃(∆(x , y)).

Ex. The µ(x ,w) in the following interval are purple.

[x , y ] =

x

a b

c

d

y

1

−1 −1

1

0

0

µ(x , y) = 0

∆(x , y) = a b

c

d

χ̃(∆(x , y)) = 0
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Let C = C(x , y) be the set of containment-maximal chains in
(x , y).

By convention, list the elements of C ∈ C from smallest
to largest including x , y . If � is a total order on C then a new
face of C ∈ C is C′ ⊆ C with C′ 6⊆ B for all B ≺ C.
Ex. If B : x ,a, c,d , y and C : x ,b, c,d , y then the new faces of
C are those containing b.
We wish to construct a MM inductively by
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How do we identify new faces?

A closed interval in a chain
C : x0, . . . , xn is a subchain of the form

I = C[xk , xl ] : xk , xk+1, . . . , xl .

Open intervals C(xk , xl) are defined similarly. A skipped interval
(SI) is I ⊆ C with C − I ⊆ B for some B ≺ C. A minimal skipped
interval (MSI) is a SI which is minimal with respect to
containment.
Ex. If B : x ,a, c,d , y & C : x ,b, c,d , y then C has MSI {b}.

I(C)
def
= {I : I is an MSI of C}.

Lemma (Babson and Hersh)
C′ ⊆ C is new ⇐⇒ C′ ∩ I 6= ∅ for all I ∈ I(C).
Proof “ =⇒ ” If C′ ∩ I = ∅ for some I then C′ ⊆ C − I. And I a
skipped interval implies C − I ⊆ B for some B ≺ C. But then
C′ ⊆ B for B ≺ C, contradicting the fact that C′ is new.
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Call a C containing an unmatched face critical . How do we
identify critical chains?

We need to turn I(C) into a set of
disjoint intervals J (C) as follows. Since I(C) has no
containments, the intervals can be ordered I1, . . . , Il so that

min I1 < . . . < min Il and max I1 < . . . < max Il .

Let J1 = I1. Construct I′2 = I2 − J1, . . . , I′l = Il − J1 and throw out
any which are not containment minimal. Let J2 = I′j where j is
the smallest index of the intervals remaining. Continue in this
way to form J (C).

Theorem (Babson and Hersh)
Let [x , y ] be an interval and let ≺ be an PL order on C(x , y).

1. C ∈ C(x , y) is critical ⇐⇒ J (C) covers C.
2. The critical face of a critical chain C is obtained by picking

the smallest element from each J ∈ J (C).
3. We have

µ(x , y) =
∑

C

(−1)#J (C)−1

where the sum is over all critical C ∈ C(x , y).
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Let A be a set (the alphabet) and let A∗ be the set of words w
over A.

Call u ∈ A∗ a factor of w if w = xuy for some x , y ∈ A∗.
Ex. u = abba is a factor of w = baabbaa.
Factor order on A∗ is the partial order u ≤ w if u is a factor of
w . The inner and outer factors of w = a1a2 . . . an are
i(w) = a2 . . . an−1.

o(w) = longest word which is a proper prefix and suffix of w .
Ex. w = abbab has i(w) = bba and o(w) = ab.
Call w = a1 . . . an flat if a1 = . . . = an. Let |w | be w ’s length.
Theorem (Björner)
In factor order on A∗

µ(u,w) =


µ(u,o(w)) if |w | − |u| > 2, u ≤ o(w) 6≤ i(w);

⇐

1 if |w | − |u| = 2, w not flat, u ∈ {o(w), i(w)};
(−1)|w |−|u| if |w | − |u| < 2;
0 otherwise.

⇐

Also, ∆(u,w) ' ball or sphere when µ(u,w) = 0 or ±1, resp.
Ex. µ(a,abbab) = µ(a,ab) = −1.
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Write chains in [u,w ] dually from largest to smallest element.

An embedding of u in w is η ∈ (A ] {0})∗ obtained by zeroing
out the positions of w outside of a given factor equal to u.
Ex. If u = abba and w = baabbaa then η = 00abba0
If y covers x then there is a unique embedding of x in y , unless
y is flat in which case we choose the embedding starting with 0.
So any maximal chain C : w = w0,w1, . . . ,wm = u determines
a chain of embeddings with labels l(C) = (l1, . . . , ln)

C : η0
l1→ η1

l2→ η2
l3→ . . .

lm→ ηm

where the li give the position of the new zero in ηi .
Ex. C : baabbaa,aabbaa,aabba,abba becomes
C : baabbaa 1→ 0aabbaa 7→ 0aabba0 2→ 00abba0,
l(C) = (1,7,2).

Lemma (S and Willenbring)
The total order on C(w ,u) given by B � C iff l(B) ≤lex l(C) is a
PL-order
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DMT gives a proof of Björner’s formula which explains the
definitions of i(w) and o(w) and the inequality between them.

Ex. Let u = a, w = abbab and consider all chains in C(w ,u)
passing through ab = o(w):

B : abbab 1→ 0bbab 2→ 00bab 3→ 000ab 5→ 000a0,

C : abbab 5→ abba0 4→ abb00 3→ ab000 2→ a0000.

Note that C(abbab,ab) is an SI of C and is, in fact, an MSI.

Proposition (S and Willenbring)
Let u ≤ o(w) 6≤ i(w) and let C ∈ C(w ,u) be the
lexicographically first chain passing through the prefix
embedding of o(w) in w. Then I = C(w ,o(w)) is an MSI.
Proof Let B be the chain which goes from w to the suffix
embedding of o(w) and then continues to u as does C. Then
B ≺ C and C − I ⊆ B so I is an SI. Because o(w) 6≤ i(w) there
are only two embeddings of o(w) in w : prefix and suffix. Thus,
since C is lexicographically first through the prefix embedding,
any other chain prior to C must agree with the portion of B up
to the suffix embedding of o(w). So I is an MSI.
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Let P be any poset.

Define generalized factor order on P∗ by
saying u = a1 . . . ak ≤ w = b1 . . . bn if w has a factor
bi+1 . . . bi+k with

a1 ≤P bi+1, . . . ,ak ≤P bi+k .

Ex. If P = P (positive integers) in the normal ordering then
352 ≤ 175614 in P∗ because comparing 352 with the factor 756
gives 3 ≤ 7, 5 ≤ 5, and 2 ≤ 6.
Note that if A is an antichain then generalized factor order on A
is Björner’s factor order. Using DMT we have been able to
determine µ for P∗. The analogues of i(w) and o(w) are not
obvious and the proof is an order of magnitude harder than for
an antichain. It would not have been possible without Babson
and Hersh’s adaptation of DMT.
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