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Suppose S is a set and let G be a finite cyclic group acting on
S. If g € G, we let
S9={te S : gt=t}and o(g) =order of gin G.
Note: if d = o(g) then d | #G, the cardinality of G. We also let
w = wgq = primitive dth root of unity.
Finally, suppose f(q) is a polynomial in g with coefficients in Z.
Definition (Reiner-Stanton-White, 2004)

The triple (S, G, f(q)) exhibits the cyclic sieving phenomenon
(c.s.p.) if, for all g € G, we have

#89 = f(w).

where w is chosen so that o(w) = o(9).

Notes. 1. At first blush, this is a surprising equation.

2. The case #G = 2 was first studied by Stembridge.

3. Dozens of c.s.p.s have been found.

4. Three proof techniques: evaluation, representation theory,
and combinatorics.
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Running example. Let [n] = {1,2,...,n} and

S= <[Z]) —{(TCln : #T = k).

Let Ch = ((1,2,...,n)). Nowge Cpactson T ={t,...,k}
by
aT ={9(tr),...,g(t)}-

Ex. Suppose n=4 and k = 2. We have

S= <[g]> = {12, 13, 14, 23, 24, 34}.

Also
Cs=1((1,2,3,4)) ={e, (1,2,3,4), (1,3)(2,4), (1,4,3,2)}.
For g = (1,3)(2,4) we have

(1,3)(2,4)12 =34, (1,3)(2,4)13 =13, (1,3)(2,4)14 = 23,
(1,3)(2,4)23 = 14, (1,3)(2,4)24 =24, (1,3)(2,4)34 =12.
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0 else. ]
Lemma

Let g € &, (symmetric group) have disjoint cycle
decomposition g = g1 --- 9. Let T C [n]. Then

for some i,

< im.

gT =T <= T=g,U---Ug,,

Ex. If g = (1,3,4)(2,6)(5) then the T ¢ (1) with gT = T are

T={1,8,4} and T =1{2,5,6}.

[m]

=
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Proposition
IfS = (") and g € C, has o(g) = d then

n/d\ .
g9 <k/d> if d|k,

0 else.
Proof If g € C,and o(g) = d then

9=091"Gn/a

where #g1 = ... = #gp/q = d. So, by the second lemma €,
T ¢ (I7) satisfies gT = T iff T is a union of k/d of the n/d
cycles g;. [
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If Gactson S = {s,..., sk} then G also acts on the vector
space

V=CS={cis1+ -+ cxsSk : ¢ € Cforalli}.

Element g € G corresponds to an invertible linear map [g]. If B
is a basis for V then let [g]g be the matrix of [g] in B. In
particular, [g]s is the permutation matrix for g acting on S.
Example. G= Gz actson S = {1,2,3} and so on

CS={ci1+c2+c33 : ¢1,C,c3 € C}.
For g = (1,2)(3) and basis S:
(1,2)(3)1=2, (1,2)(3)2=1, (1,2)(3)3 =3.

And so

o = O
o O =

- O O
| I |

[(1,2)(3)]s = {
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A G-module is any C-vector space V where G acts by invertible
linear transformations. The character of G on V is the function
x : G — C given by

x(9) = tlg].
Note that x is well defined in that the trace is independent of
the basis. For a group G acting on S, the character on CS is
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x : G — C given by

x(9) = tlg].
Note that x is well defined in that the trace is independent of
the basis. For a group G acting on S, the character on CS is

x(9) = tr[g]s = #S9. (1)

If G is cyclic, then there will be a basis B for CS such that every
g € G satisfies
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[9]g = diag(1,...,1,0,.. Lo, w?, ... w2, ..)

where w = wy(g). Thus
X(@) =tlgls =Y _ mw' = f(w). (2)
i>0
where f(q) = ;5 m;q'. Now (1) and (2) imply f(w) = #S9 so

we have the c.s.p. To get the S = ([Z]) example, one uses the
kth exterior power of a vector space V with dim V. = n.
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To combinatorially prove (S, G, f(q)) exhibits the c.s.p., first find
a weight function wt : S — Z[q] such that

flg)=> wtT. (3)
TeS

If BC SweletwtB =) ;.gwtT. Foreach g € G we then find
a partition of S
m=7ng=1{B,Ba,...}

satisfying, the following two criteria where w = wy(g):

() For1 << #89 we have #B; =1 and wtB;j|, = 1.
() Fori> #89 we have #B; > 1 and wt Bj|,, = 0.
We then have the c.s.p. since foreach g € G

#Sg

Zth|w—Zth|w—1+ -+ 14040+ - = #59.
TeS
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Suppose g € C, with o(g) = d, so

9=01...Gnja Where #gy=...=%gnq=d.
Suppose h € &, satisfies
h=hy "'hn/d where #h1 ::#hn/d:d

9 h
Then, by the second lemma @, # (I7)” = % (I71)".
Ex. If n=4and k = 2 then wt{t;, b} = g T2=3. So
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