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1. Chromatic Polynomials

Let G = (V, E) be a graph with vertices V and edges
E. Loops and multiedges are permitted. A proper
coloring of Gisc:V — {1,2,...,n} such that

uv € E = c(u) # c(v).

The chromatic polynomial of GG is

P(G) = P(G,n) := # of proper ¢c: V — {1,2,...,n}.

Ex. The path P3.

P(G,n) (# of ways to color u)

-(# of ways to then color v)
-(# of ways to then color w)
n(n—1)(n—1)

n3 — 2n?2 -+ n.



1a. Deletion/Contraction

If e €¢ E then let

G\e
G/e

G with e deleted,
GG with e contracted to a point.

EXx. Deletion and contraction in a specific graph.
€

G = G\GZ G/e:

Lemma 1 (Deletion-Contraction) Ife e E then

P(G) = P(G\ e) — P(G/e).

Proof If e = uv then

P(G\e) = (# of colorings with c(u) # c(v))
+(# of colorings with c¢(u) = ¢(v))
P(G) + P(GJe). =



1b. Whitney’s Theorem

If F C E then let F also stand for the subgraph of
G with vertices V and edges F'.

EX. The two meanings of F.
€

f g f
h h

Theorem 2 (Whitney, 1932) We have
P(@) = Y (-1 n*D)
FCE

where |F| is the cardinality of F, and k(F) is the
number of connected components of F'. n

EX. The path Ps.

S (=D)IF| pk(F)

|
3

|
3

|
3
_|_
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2. Stanley’s Symmetric Function

Let V = {v1,...,vy4} and let x = {x1,xp,...} be a set
of commuting variables. Define

X(G) = X(G,2) = 3 Ze(o1)Te(v2) " Te(oy)
where the sum is over all proper c:V — {1,2,...}.

EXx. The path Ps.

P S S

Te e e 3e e 4o

C 2¢ 1¢ 21 24 21 21
e e 3e e 4e e

X(G) — x%xQ -~ 331:8% +-.--4+ 651315!32333 -+ 6331332534 + ...

Notes.
1. Suppose thatwe let 1 = x> =:-- =2, = 1 and
x; = 0 for + > n, denoted x = 1", then
X(G,1") = Z 1 = P(G,n).
c:V—{1,2,...,n}
c proper

2. X(G,z) is a symmetric function.



2a. Symmetric Functions

Let S, be the symmeteric group on {1,2,...,m}
and let Q[[x]] denote the algebra of formal power
series in x over Q. Now g € Sy, acts of f(x) € Q[[x]]
by

gf(x]_,ZBQ, . ) — f(xglax927 . )

where gt = ¢ for : > m. Then f is symmetric if

gf = f forall ge Sy and all m > 1.

An integer partition of d, A+ d, is a weakly decreas-
ing sequence of positive integers A = (A1, Ao, ..., )
such that > ; \; = d. The associated monomial sym-
metric function is

m) = sum of all monomials with exponent .

Ex. If A\=(3,3,1) then

m3.3,1) — «’L‘?x‘gfvs + «’B?Z‘ZB% + w1x§w§ + :v?x%u + -

The algebra of symmetric functions is

N = A(x) =span{m, : all A}



Another basis for A consists of the power sum sym-
metric functions, py, defined as follows:

pg = x}+24+2¢+ ... for d a positive integer,
DA = DPxPx, D), for A= (A1, A0,..., Ap).
EX. p@,31) = P3P3P1

(23 + 23+ )?(zr + 22+ ).

Theorem 3 (Stanley, 1995) We have

X&)=Y ~DF pypy
FCE

where A(F) = (A1, X2,...,A;), A\; being the number
of vertices in the ith component of F'. =

Ex. If G = P3 then
F . L4 I [ ®

Z(—1)|F| PA(F) = P(1,1,1) — P(2,1) — P(2,1) T P(3)

Stanley implies Whitney: Substituting = 1"
n
pg(1™) = 1+4+1+4.---4+41=n and

k(F)
py(1™) o = nk),




3. Noncommmuting Variables

Let z1,xp,... be noncommuting and let Q{{x)) be
the corresponding ring of formal power series. FiXx
a total order vq,vo,...,v4 On V and define

Y(G) =Y (G,z) .= Zxc(vl)xc(vg) " Te(vy)
where the sum is over all proper c:V — {1,2,...}.
Define an operation of induction, 1, by

TigTin - Tiy T = Ty Tiy =+~ Tjy T
and linear extension to Q({x)).

EX. z3z122 T = z31113.
24143 24143

Lemma 4 (Gebhard-S, 2000) Ifv;_qvg € E then

Y(G)=Y(G\e)—Y(G/e) . =



3a. Symmetric Functions in Noncommuting
Variables

The action of Sy, on Q{{x)) is the same as on Q[[x]].
The symmetric functions in noncommuting variables
have bases indexed by partitions of [d] :={1,2,...}.

A set partition of [d], = F [d], is a collection of sets
w = B1/By/.../By such that W;B; = [d]. The B, are
called the blocks of the set partition. The type of
7 IS the integer partition

>‘(7‘-) — (|B1|7 |BQ|7 ceey |Bk|)
Ex. m = 143/268/57  [8] is of type A(7) = (3, 3,2).

The associated monomial symmetric function is

Mr = ) Tj Tj, -~ T, Where
ij = 1 Iff 5,k are in the same block of .

EX. mi3/o> = T1T2%1 + xoxr1x2 + T123T1 + - - -
The algebra of symmetric functions in noncommut-
ing variables is

N =Tn(x) =span{my : all w}.
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The power sum symmetric function basis for MN(x)
IS

Pr = X T T, -+ - T, Where
ij = 1} If j,k are in the same block of .

EX. p13p=mizppt+ai+z3+--.

An integer partition A = (A1, A2,...,Ar) F d can be
written

A= (1M1, 2Mm2 d"d)
where m; is the multiplicity of ¢z in A. Define

Al = Aol !
A milmo!l .. -my!

Let p: Q({(x)) — Q[[z]] be the forgetful map.

p(mn) = A(W)!mx(ﬂ) and  p(pr) = Pr(n)-

Theorem 5 (Gebhard-S, 2000) IfV = [d] then
V(&)=Y DF pp
FCE

where n(F) = B1/B>/... /By, B; being the vertices
in the ith component of F'. =
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3b. The (3+41)-Free Conjecture

Let C),, denote a totally ordered set on n elements.
A poset (partially ordered set) P is (n+m)-free if it
contains no induced subposet isomorphic to C,,Cpy,.
The incomparability graph of a poset P is Gp where
V = P with an edge from v to v if v and v are not
related in P. Let {e), : all A} be the elementary
symmetric function basis for A.

Conjecture 6 (Stanley and Stembridge, 1993)
IfPis (3+1)-free and X(Gp) = Y ycye) thency >0
for all . (We say that X(Gp) is e-positive.)

The indifference graphs are the Gp where P is both
(3 + 1)-free and (2 4+ 2)-free. They can also be
characterized as follows. Let Z = (Iq1,15,...,1;) be
a sequence of intervals I; C [d]. The corresponding
indifference graph, G7, has vertex set V = [d] with
a complete graph on the vertices of I; for each j.
WLOG, there is no containment among the /; and
they are listed in order of increasing left endpoint.

Theorem 7 (Gebhard and S, 2000) If we have
[I;N1;41] <1 for all j, then X(Gz) is e-positive. u
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4. Basis Change a la Doubilet

A basis by for A(x) is multiplicative if it's defined by

1. defining b; for positive integers d,
2. defining by = by, by, -~ by, for A= (A1,A2,...,Ag).

The following bases are multiplicative: the power
sum symmetric functions

pa=az{+a5+ -,
the elementary symmetric functions

eq = sum of all square-free monomials of degree d,

the complete homogeneous symmetric functions

hg = sum of all monomials of degree d,
Ex. We have

(@3 + 23+ )*(z1 + 22+

P(3,3,1) =
hzz1y = (@ +2e0+ 212023+ )2 (21 + 20+ -+

Note that the monomial symmetric fuctions

my = sum of all monomials with exponent A\

do not form a multiplicative basis.
13



In M(xz) we have corresponding bases

Pr = 2T Ty, - - - T, Where

ij = 1} If j,k are in the same block of m,
and

er = ). Tj; Ti, - T, Where

ij 7 i If 7,k are in the same block of .
Recall also

My = ) T Tiy * - T, Where

ij = 1 Iff 3,k are in the same block of .

Ex. We have

miz/p = Z1T2T1 + xox12x2 + T13T1 + - *,
p13/2 = zixoxy +Tomimo+ -+ a3+ a3+ -
= mj3/p T M123,
€13/20 = *1Z1ZT2 + - Fx1vow + -+ @1T3T2 + -+

M15/3 T M1/23 T M1/2/3-

If p: Q{{x)) — Q[[x]] is the forgetful map.

p(mz) = A(m)'myn
p(Pr) = Prx)
pler) = )\(7r)!e>\(7r).

14



4a. The Partition Lattice and Mobius Inversion
Let M,; be the poset of all #  [d] ordered by re-
finement, i.e., if r=B1/.../B and c =C41/.../C
then m < o if each B; is contained in some Cj.

EX. We have

123

N3 = 12/3 1/23

1/2/3

1, is a lattice, meaning every pair w,o € 1; has

TN\Oo
TV o

greatest lower bound or meet of = and o,
least upper bound or join of = and o.

So M, has a unique minimal element 0 =1/2/.../d.
Immediately from the definitions

pWZng and e; = Z Mo
o>T oAT=0

15



To invert these sums, define the Mobius function of
a finite poset P to be u: P x P — Z such that

(1 if a =2>,
pla,b) = § _ Z w(a,c) else.
\ a<c<b
EX. 123
w(0,7) : 12/3 1/23
1/2/3

In general, u(0,B1/.../By) = [[(-D)IBiI=1(|B;| - 1)!

Theorem 8 (MoObius Inversion, Rota, 1964) Let
P be a finite poset and G be an additive group. If
f,g: P — G then

f(a) = Z g(b) for all a € P

b>a
iff g(a) = Y u(a,b) f(b) for all a € P.
b>a

Corollary 9 (Doubilet, 1972) We have

me= 3 u(m,Ipe, ma= Y BT S L gYer.

o> o> 'U’(O’ 0) <o

16



What about hAx? A function f : D — R has ker-
nal ker f = D whose blocks are the nonempty sets
among the f~1(r) for r € R. Also, f : [d] — z has
associated monomial

My = f(1)f(2)--- f(d).

Then
maqa — Z Mf.
ker f=m
Ex. If r = 13/2 then
po. JA) =2, fA3) =y
f(2) = x> f(2) =z
> My = T1T2T1 =+ L2T1TD +
Define
h']‘(‘ e Z Mf
(f,L)

where f : [d] —  and L is a linear ordering of the
elements of each block of ker f Aw. Then

p(hﬂ') — )\(71')'/’1,)\(71.)
Ex. If r = 13/2 then

] f(13) — I, f(31) — I,
(L) T p2) = f(2) = o1
2. My = 3 + 3 +

17



5. MacMahon and Schur Symmetric Functions

Consider the d sets of variables 2’ = {z7,z},...},

= {z],25,...}, ..., 2(d) = {:c(d) (d),...}. Let
g € Sm act on f(z',2",...,2) € Q[[z',2",..., 2]
diagonally:
gf(zy,zY,...,25,25,...) = f(:cgl,x'gll,...,;1:272,:1:’9’2,...).

The monomial
101111 x(d)qx/azx”bz .. ,x(d)@ e

S R | 2 42
has multiexponent
Xo= {A1,x2,..

{(a’].? bl? ¢ 761)7 (a’27 627 ¢t 762)7 ° }
as well as multidegree

(n1,n9,...,n4)
(a’labla'“)Cl)+(a2,b2,...,02)—|—---

—

and we write X - @. The associated monomial
MacMahon symmetric function is

n

my = sum of all monomials with multiexponent .

EX. mr(21),3,001 = zPazs + 2Pl + -

The algebra of MacMahon symmetric functions is
M= M,z ... D)= span{my : all X},

18



Consider

d
M qay = span{my : all Ak (1,1,..., D}

Now there exists an isomorphism of vector spaces

¢ P Mqay — N given by
d>0

T, T

1]
and linear extension. Also, under this isomorphism

ms — Mg where )\; is the characteristic vector of B;.

, ,.,...xl({;d)Hxixj...xk

EX. m(1,0,1,1,0),(0,1,0,0,1)} = M134/25-
Notes 1. This is not an isomorphism of algebras
as M 14y is commutative.

d>0

2. The multiplicative bases of A have analogs in M.

Forexample, hy = hyxiyhiyzy - Where by, s, . ng)}
has the generating function
Z h{(nlan,.",nd)}’r‘nlan « o tnd
ni,mno,...,ng>0
— H 1
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5a. Schur Functions

A partition A = (A1,A2,...,Ar) has a shape, also
denoted )\, consisting of k left-justified rows with \;
dots in row 1.

Ex. Partition A = (3,3,2,1) has Ferrers diagram

>

|
e 6 o o
e o o

A (semistandard) Young tableau T of shape X, writ-
ten X(T) = A, is obtained by replacing each dot of
the shape of A with a positive integer so that rows
weakly increase and columns strictly increase.

EX. A Young tableau of shape (3,3,2,1) is
1 3

225

T = 6 :

OO W N =

20



The Schur function, sy, is

sx= Y Mp where Mp=]] .
AT)=A\ €T

Ex. if A= (2,1) then

o 1 1 1 2 1 2 1 3
2 9 2 9 e e e 9 3 , 2 s e e
8(271) — CU%:CQ + xlx% + ’ "|‘331332£U3—|—x1:1;23;3-|—. .o

If \,7 d then a primed Young tableau T' of shape
A and multidegree n is obtained from T by putting
primes on ny elements of T', double primes on n»

elements of T', etc. The corresponding MacMahon
Schur function is

Sy= > Mp where Mp= ]] :cgj).
AT =\ i(eT

Ex. if A=(2,1) and = (1,1,1) then

1/ 1// 1// 1/ 1/// 1//
T S NT e o g e
(1,1,1) s o NI, TN,
Sy " =TTy + 2@ Ty o 2Ty F

21



The MacMahon Schur functions have many of the
same properties as do the regular Schur functions.

Theorem 10 (Jacobi-Trudi Determinant) For the
partition A = (A1, A2,..., ), we have

Sx = |hy—itjl-

Define m < n to be the componentwise partial order
on vectors of length d.

Theorem 11 (Rosas-S,2001) Given two partitions
A, n b d, we have

SS=1 2 ham

<A

M —i4j

with the convention that if the product of two mono-
mials does not have multidegree n then that product
IS zero. u
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