Counting permutations by congruence class of major index

Hélène Barcelo (Arizona State University), Bruce Sagan (Michigan State University), and Sheila Sundaram (Bard College)

www.math.msu.edu/~sagan

March 20, 2006

The major index

The inversion number

Shuffles

The case $k = \ell$

Outline

The major index

The inversion number

Shuffles

The case k = k

$$[n] = \{1, 2, \ldots, n\},\$$

 S_n = symmetric group of permutations of [n].

$$[n] = \{1, 2, \ldots, n\},\$$

 S_n = symmetric group of permutations of [n].

Then $\pi = a_1 a_2 \dots a_n \in S_n$ has *major index*

$$\operatorname{maj} \pi = \sum_{a_i > a_{i+1}} i.$$

$$[n] = \{1, 2, \ldots, n\},\$$

 S_n = symmetric group of permutations of [n].

Then $\pi = a_1 a_2 \dots a_n \in S_n$ has *major index*

$$\operatorname{maj} \pi = \sum_{a_i > a_{i+1}} i.$$

Ex. If
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 > 3 & 6 > 1 & 4 \end{pmatrix}$$

$$[n] = \{1, 2, \ldots, n\},\$$

$$S_n$$
 = symmetric group of permutations of $[n]$.

Then $\pi = a_1 a_2 \dots a_n \in S_n$ has *major index*

$$\operatorname{maj} \pi = \sum_{a_i > a_{i+1}} i.$$

Ex. If
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 > 3 & 6 > 1 & 4 \end{pmatrix}$$
 then $\max_{i} \pi = 2 + 4 = 6.$

$$[n] = \{1, 2, \ldots, n\},\$$

 S_n = symmetric group of permutations of [n].

Then $\pi = a_1 a_2 \dots a_n \in S_n$ has *major index*

$$\operatorname{maj} \pi = \sum_{a_i > a_{i+1}} i.$$

Ex. If
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 > 3 & 6 > 1 & 4 \end{pmatrix}$$
 then

$$maj \pi = 2 + 4 = 6.$$

Theorem

 $\pi \in S_n$

If q is an indeterminate then

$$\sum q^{\text{maj }\pi} = 1(1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1}).$$

$$m_n^{k,\ell}(i,j) = \#\{\pi \in S_n : \operatorname{maj} \pi \equiv i \pmod{k}, \operatorname{maj} \pi^{-1} \equiv j \pmod{\ell}\}.$$

$$m_n^{k,\ell}(i,j) = \#\{\pi \in S_n : \operatorname{maj} \pi \equiv i \pmod{k}, \operatorname{maj} \pi^{-1} \equiv j \pmod{\ell}\}.$$

Ex. Suppose n = 5.

$$m_n^{k,\ell}(i,j) = \#\{\pi \in S_n : \operatorname{maj} \pi \equiv i \pmod{k}, \operatorname{maj} \pi^{-1} \equiv j \pmod{\ell}\}.$$

Ex. Suppose n = 5.

Theorem

If $k, \ell \le n$ and $gcd(k, \ell) = 1$ then

$$m_n^{k,\ell}(i,j) = \frac{n!}{k\ell}$$
 $\forall i,j.$

$$m_n^{k,\ell}(i,j) = \#\{\pi \in S_n : \operatorname{maj} \pi \equiv i \pmod{k}, \operatorname{maj} \pi^{-1} \equiv j \pmod{\ell}\}.$$

Ex. Suppose n = 5.

Theorem

If $k, \ell \le n$ and $gcd(k, \ell) = 1$ then

$$m_n^{k,\ell}(i,j) = \frac{n!}{k\ell}$$
 $\forall i,j.$

History. Implicit in GORDON (1963) and ROSELLE (1974).

$$m_n^{k,\ell}(i,j) = \#\{\pi \in S_n : \operatorname{maj} \pi \equiv i \pmod{k}, \operatorname{maj} \pi^{-1} \equiv j \pmod{\ell}\}.$$

Ex. Suppose n = 5.

Theorem

If $k, \ell \le n$ and $\gcd(k, \ell) = 1$ then

$$m_n^{k,\ell}(i,j) = \frac{n!}{k\ell}$$
 $\forall i,j.$

History. Implicit in GORDON (1963) and ROSELLE (1974). Explicit in BARCELO, MAULE, and SUNDARAM (2002).

$$m_n^{k,\ell}(i,j) = \#\{\pi \in S_n : \operatorname{maj} \pi \equiv i \pmod{k}, \operatorname{maj} \pi^{-1} \equiv j \pmod{\ell}\}.$$

Ex. Suppose n = 5.

Theorem

If $k, \ell \le n$ and $\gcd(k, \ell) = 1$ then

$$m_n^{k,\ell}(i,j) = \frac{n!}{k\ell}$$
 $\forall i,j.$

History. Implicit in GORDON (1963) and ROSELLE (1974). Explicit in BARCELO, MAULE, and SUNDARAM (2002).

Combinatorial Proof (BSS)

(1) Prove the special case
$$k = 1$$
: $m_n^{1,\ell}(i,j) = n!/\ell \quad \forall i,j$.

$$m_n^{k,\ell}(i,j) = \#\{\pi \in S_n : \operatorname{maj} \pi \equiv i \pmod{k}, \operatorname{maj} \pi^{-1} \equiv j \pmod{\ell}\}.$$

Ex. Suppose n = 5.

Theorem

If $k, \ell \le n$ and $\gcd(k, \ell) = 1$ then

$$m_n^{k,\ell}(i,j) = \frac{n!}{k\ell}$$
 $\forall i,j.$

History. Implicit in GORDON (1963) and ROSELLE (1974). Explicit in BARCELO, MAULE, and SUNDARAM (2002).

Combinatorial Proof (BSS)

- (1) Prove the special case k = 1: $m_n^{1,\ell}(i,j) = n!/\ell \quad \forall i,j.$
- (2) Use (1) to prove the case k = n: $m_n^{n,\ell}(i,j) = n!/(n\ell) \quad \forall i,j$.

$$m_n^{k,\ell}(i,j) = \#\{\pi \in S_n : \operatorname{maj} \pi \equiv i \pmod{k}, \operatorname{maj} \pi^{-1} \equiv j \pmod{\ell}\}.$$

Ex. Suppose n = 5.

Theorem

If $k, \ell \le n$ and $\gcd(k, \ell) = 1$ then

$$m_n^{k,\ell}(i,j) = \frac{n!}{k\ell}$$
 $\forall i,j.$

History. Implicit in GORDON (1963) and ROSELLE (1974). Explicit in BARCELO, MAULE, and SUNDARAM (2002).

Combinatorial Proof (BSS)

- (1) Prove the special case k = 1: $m_n^{1,\ell}(i,j) = n!/\ell \quad \forall i,j$.
- (2) Use (1) to prove the case k = n: $m_n^{n,\ell}(i,j) = n!/(n\ell) \quad \forall i,j$.
- (3) Use (2) and induction on n to prove the final case n > k.

Outline

The major index

The inversion number

Shuffles

The case k = k

Ex. If
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 3 & 6 & 1 & 4 \end{pmatrix}$$
 then $\pi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 > 1 & 3 & 6 > 2 & 4 \end{pmatrix}$

Ex. If
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 3 & 6 & 1 & 4 \end{pmatrix}$$
 then $\pi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 > 1 & 3 & 6 > 2 & 4 \end{pmatrix}$

$$\therefore$$
 imaj $\pi = 1 + 4$

Ex. If
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 3 & 6 & 1 & 4 \end{pmatrix}$$
 then $\pi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 > 1 & 3 & 6 > 2 & 4 \end{pmatrix}$

$$\therefore$$
 imaj $\pi = 1 + 4 = \sum_{i+1 \text{ left of } i} i$.

Ex. If
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 3 & 6 & 1 & 4 \end{pmatrix}$$
 then $\pi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 > 1 & 3 & 6 > 2 & 4 \end{pmatrix}$

$$\therefore \operatorname{imaj} \pi = 1 + 4 = \sum_{i+1 \text{ left of } i} i.$$

The *inversion number* of π is

inv
$$\pi = \#\{(a_i, a_i) : i < j \text{ and } a_i > a_i\}.$$

Ex. If
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 3 & 6 & 1 & 4 \end{pmatrix}$$
 then $\pi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 > 1 & 3 & 6 > 2 & 4 \end{pmatrix}$

$$\therefore \operatorname{imaj} \pi = 1 + 4 = \sum_{i+1 \text{ left of } i} i.$$

inv
$$\pi = \#\{21, 53, 51, 54, 31, 61, 64\} = 7.$$

The *inversion number* of π is

inv
$$\pi = \#\{(a_i, a_i) : i < j \text{ and } a_i > a_i\}.$$

Ex. If
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 3 & 6 & 1 & 4 \end{pmatrix}$$
 then $\pi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 > 1 & 3 & 6 > 2 & 4 \end{pmatrix}$

$$\therefore \operatorname{imaj} \pi = 1 + 4 = \sum_{i+1 \text{ left of } i} i.$$

inv
$$\pi = \#\{21, 53, 51, 54, 31, 61, 64\} = 7.$$

The *inversion number* of π is

inv
$$\pi = \#\{(a_i, a_j) : i < j \text{ and } a_i > a_j\}.$$

Theorem

$$\sum_{\pi \in S_n} q^{\operatorname{inv} \pi} = 1(1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1}).$$

Ex. If
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 3 & 6 & 1 & 4 \end{pmatrix}$$
 then $\pi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 > 1 & 3 & 6 > 2 & 4 \end{pmatrix}$

$$\therefore \operatorname{imaj} \pi = 1 + 4 = \sum_{i+1 \text{ left of } i} i.$$

inv
$$\pi = \#\{21, 53, 51, 54, 31, 61, 64\} = 7.$$

The *inversion number* of π is

inv
$$\pi = \#\{(a_i, a_i) : i < j \text{ and } a_i > a_i\}.$$

Theorem

$$\sum_{\pi \in S_n} q^{\text{inv }\pi} = 1(1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1}).$$

We say maj and inv are equidistributed, i.e., have the same generating function. So are (maj, imaj) and (inv, imaj).

Proof of (2): If $m_n^{1,\ell}(i,j) = \frac{n!}{\ell}$ then $m_n^{n,\ell}(i,j) = \frac{n!}{n\ell}$ $(\forall i,j)$.

Proof of (2): If
$$m_n^{1,\ell}(i,j) = \frac{n!}{\ell}$$
 then $m_n^{n,\ell}(i,j) = \frac{n!}{n\ell}$ $(\forall i,j)$. Let

$$M_n^{k,\ell}(i,j) = \{ \pi \in S_n : \operatorname{inv} \pi \equiv i \pmod{k}, \operatorname{imaj} \pi \equiv j \pmod{\ell} \}.$$

Proof of (2): If $m_n^{1,\ell}(i,j) = \frac{n!}{\ell}$ then $m_n^{n,\ell}(i,j) = \frac{n!}{n\ell}$ $(\forall i,j)$. Let

$$M_n^{k,\ell}(i,j) = \{ \pi \in S_n : \operatorname{inv} \pi \equiv i \pmod{k}, \operatorname{imaj} \pi \equiv j \pmod{\ell} \}.$$

$$\therefore m_n^{k,\ell}(i,j) = \# M_n^{k,\ell}(i,j).$$

Proof of (2): If
$$m_n^{1,\ell}(i,j) = \frac{n!}{\ell}$$
 then $m_n^{n,\ell}(i,j) = \frac{n!}{n\ell}$ $(\forall i,j)$. Let

$$M_n^{k,\ell}(i,j) = \{ \pi \in S_n : \operatorname{inv} \pi \equiv i \pmod{k}, \operatorname{imaj} \pi \equiv j \pmod{\ell} \}.$$

$$\therefore m_n^{k,\ell}(i,j) = \# M_n^{k,\ell}(i,j).$$

$$M(i,j) = M_n^{n,\ell}(i,j)$$
 and $m(i,j) = \#M(i,j)$.

Proof of (2): If
$$m_n^{1,\ell}(i,j) = \frac{n!}{\ell}$$
 then $m_n^{n,\ell}(i,j) = \frac{n!}{n\ell}$ $(\forall i,j)$. Let

$$M_n^{k,\ell}(i,j) = \{ \pi \in S_n : \operatorname{inv} \pi \equiv i \pmod{k}, \operatorname{imaj} \pi \equiv j \pmod{\ell} \}.$$

$$\therefore m_n^{k,\ell}(i,j) = \# M_n^{k,\ell}(i,j).$$

$$M(i,j) = M_n^{n,\ell}(i,j)$$
 and $m(i,j) = \#M(i,j)$.

It suffices to find a bijection

$$M(i,j) \longleftrightarrow M(i+1,j) \quad \forall i,j$$

Proof of (2): If
$$m_n^{1,\ell}(i,j) = \frac{n!}{\ell}$$
 then $m_n^{n,\ell}(i,j) = \frac{n!}{n\ell}$ $(\forall i,j)$.

$$M_n^{k,\ell}(i,j) = \{ \pi \in S_n : \operatorname{inv} \pi \equiv i \pmod{k}, \operatorname{imaj} \pi \equiv j \pmod{\ell} \}.$$

$$\therefore m_n^{k,\ell}(i,j) = \# M_n^{k,\ell}(i,j).$$

$$M(i,j) = M_n^{n,\ell}(i,j)$$
 and $m(i,j) = \#M(i,j)$.

It suffices to find a bijection

$$M(i,j) \longleftrightarrow M(i+1,j) \quad \forall i,j$$

since then

$$m(1,j) = m(2,j) = \ldots = m(n,j).$$

Proof of (2): If
$$m_n^{1,\ell}(i,j) = \frac{n!}{\ell}$$
 then $m_n^{n,\ell}(i,j) = \frac{n!}{n\ell}$ $(\forall i,j)$.

$$M_n^{k,\ell}(i,j) = \{ \pi \in S_n : \operatorname{inv} \pi \equiv i \pmod{k}, \operatorname{imaj} \pi \equiv j \pmod{\ell} \}.$$

$$\therefore m_n^{k,\ell}(i,j) = \# M_n^{k,\ell}(i,j).$$

$$M(i,j) = M_n^{n,\ell}(i,j)$$
 and $m(i,j) = \#M(i,j)$.

It suffices to find a bijection

$$M(i,j) \longleftrightarrow M(i+1,j) \quad \forall i,j$$

since then

$$m(1,j) = m(2,j) = \ldots = m(n,j).$$

Also,

$$m(1,j)+m(2,j)+\cdots+m(n,j)$$

Proof of (2): If
$$m_n^{1,\ell}(i,j) = \frac{n!}{\ell}$$
 then $m_n^{n,\ell}(i,j) = \frac{n!}{n\ell}$ $(\forall i,j)$.

$$M_n^{k,\ell}(i,j) = \{ \pi \in S_n : \operatorname{inv} \pi \equiv i \pmod{k}, \operatorname{imaj} \pi \equiv j \pmod{\ell} \}.$$

$$\therefore m_n^{k,\ell}(i,j) = \# M_n^{k,\ell}(i,j).$$

$$M(i,j) = M_n^{n,\ell}(i,j)$$
 and $m(i,j) = \#M(i,j)$.

It suffices to find a bijection

$$M(i,j) \longleftrightarrow M(i+1,j) \quad \forall i,j$$

since then

$$m(1,j) = m(2,j) = \ldots = m(n,j).$$

Also,

$$m(1,j) + m(2,j) + \cdots + m(n,j) = m_n^{1,\ell}(i,j)$$

Proof of (2): If
$$m_n^{1,\ell}(i,j) = \frac{n!}{\ell}$$
 then $m_n^{n,\ell}(i,j) = \frac{n!}{n\ell}$ $(\forall i,j)$. Let

$$M_n^{k,\ell}(i,j) = \{ \pi \in S_n : \operatorname{inv} \pi \equiv i \pmod{k}, \operatorname{imaj} \pi \equiv j \pmod{\ell} \}.$$

$$\therefore m_n^{k,\ell}(i,j) = \# M_n^{k,\ell}(i,j).$$

$$M(i,j) = M_n^{n,\ell}(i,j)$$
 and $m(i,j) = \#M(i,j)$.

It suffices to find a bijection

$$M(i,j) \longleftrightarrow M(i+1,j) \quad \forall i,j$$

since then

$$m(1,j) = m(2,j) = \ldots = m(n,j).$$

Also,

$$m(1,j) + m(2,j) + \cdots + m(n,j) = m_n^{1,\ell}(i,j) = \frac{n!}{\ell}.$$

Proof of (2): If
$$m_n^{1,\ell}(i,j) = \frac{n!}{\ell}$$
 then $m_n^{n,\ell}(i,j) = \frac{n!}{n\ell}$ $(\forall i,j)$.

$$M_n^{k,\ell}(i,j) = \{ \pi \in S_n : \operatorname{inv} \pi \equiv i \pmod{k}, \operatorname{imaj} \pi \equiv j \pmod{\ell} \}.$$

$$\therefore m_n^{k,\ell}(i,j) = \# M_n^{k,\ell}(i,j).$$

$$M(i,j) = M_n^{n,\ell}(i,j)$$
 and $m(i,j) = \# M(i,j)$.

It suffices to find a bijection

$$M(i,j) \longleftrightarrow M(i+1,j) \quad \forall i,j$$

since then

$$m(1,j)=m(2,j)=\ldots=m(n,j).$$

Also,

$$m(1,j) + m(2,j) + \cdots + m(n,j) = m_n^{1,\ell}(i,j) = \frac{n!}{\ell}.$$

So

$$m(i,j)=\frac{n!}{n\ell}.$$

Outline

The major index

The inversion number

Shuffles

The case $k = \ell$

If $\tau = a_1 a_2 \dots a_n$ is a sequence and $I = \{i_1, i_2, \dots, i_\ell\}$ then

$$\tau|_{I}=a_{i_1}a_{i_2}\ldots a_{i_\ell}.$$

If $au=a_1a_2\dots a_n$ is a sequence and $I=\{i_1,i_2,\dots,i_\ell\}$ then $au|_I=a_{i_1}a_{i_2}\dots a_{i_\ell}.$

If $\#\pi = \#I = \ell$ and $\#\sigma = m$ then the *I-shuffle* of π and σ is $\tau = \pi \coprod_I \sigma$ where $\#\tau = \ell + m$, $\tau|_I = \pi$, $\tau|_{[\ell+m]-I} = \sigma$.

If $\tau=a_1a_2\dots a_n$ is a sequence and $I=\{i_1,i_2,\dots,i_\ell\}$ then $\tau|_I=a_{i_1}a_{i_2}\dots a_{i_\ell}.$

If $\#\pi = \#I = \ell$ and $\#\sigma = m$ then the *I-shuffle* of π and σ is $\tau = \pi \bigsqcup_{I} \sigma \quad \text{where} \quad \#\tau = \ell + m, \ \tau|_{I} = \pi, \ \tau|_{[\ell + m] - I} = \sigma.$

Ex. If $\pi = 3 \ 1 \ 4 \ 2$, $I = \{1, 3, 4, 6\}$, and $\sigma = 6 \ 7 \ 5$ then

If $\tau = a_1 a_2 \dots a_n$ is a sequence and $I = \{i_1, i_2, \dots, i_\ell\}$ then $\tau|_I = a_{i_1} a_{i_2} \dots a_{i_\ell}.$

If $\#\pi = \#I = \ell$ and $\#\sigma = m$ then the *I-shuffle* of π and σ is $\tau = \pi \bigsqcup_{I} \sigma \quad \text{where} \quad \#\tau = \ell + m, \ \tau|_{I} = \pi, \ \tau|_{[\ell + m] - I} = \sigma.$

Ex. If $\pi = 3 \ 1 \ 4 \ 2$, $I = \{1, \ 3, \ 4, \ 6\}$, and $\sigma = 6 \ 7 \ 5$ then

Define $f: S_n \to S_n$ as follows. If $\tau \in S_n$ then write $\tau = \pi \coprod_I \sigma$ where $\pi \in S_\ell$.

If $\tau = a_1 a_2 \dots a_n$ is a sequence and $I = \{i_1, i_2, \dots, i_\ell\}$ then

$$au|_{I}=\pmb{a_{i_1}a_{i_2}\dots a_{i_\ell}}.$$

If $\#\pi = \#I = \ell$ and $\#\sigma = m$ then the *I-shuffle* of π and σ is $\tau = \pi \coprod_{I} \sigma$ where $\#\tau = \ell + m$, $\tau|_{I} = \pi$, $\tau|_{[\ell+m]-I} = \sigma$.

Ex. If $\pi = 3 \ 1 \ 4 \ 2$, $I = \{1, 3, 4, 6\}$, and $\sigma = 6 \ 7 \ 5$ then

Define $f: S_n \to S_n$ as follows. If $\tau \in S_n$ then write $\tau = \pi \coprod_{\ell} \sigma$ where $\pi \in S_{\ell}$.

Now let $f(\tau) = \tau'$ where

$$\tau' = \pi \coprod_{l+1} \sigma$$
 with $l+1 = \{i_1+1,\ldots,i_\ell+1\} \pmod{n}$.

If
$$\tau = a_1 a_2 \dots a_n$$
 is a sequence and $I = \{i_1, i_2, \dots, i_\ell\}$ then
$$\tau|_I = a_{i_1} a_{i_2} \dots a_{i_\ell}.$$

If $\#\pi = \#I = \ell$ and $\#\sigma = m$ then the *I-shuffle* of π and σ is $\tau = \pi \bigsqcup_{I} \sigma \quad \text{where} \quad \#\tau = \ell + m, \ \tau|_{I} = \pi, \ \tau|_{[\ell + m] - I} = \sigma.$

Ex. If $\pi = 3 \ 1 \ 4 \ 2$, $I = \{1, 3, 4, 6\}$, and $\sigma = 6 \ 7 \ 5$ then

Define $f: S_n \to S_n$ as follows. If $\tau \in S_n$ then write $\tau = \pi \bigsqcup_{I} \sigma$ where $\pi \in S_{\ell}$.

Now let $f(\tau) = \tau'$ where

$$\tau' = \pi \coprod_{l+1} \sigma$$
 with $l+1 = \{i_1+1, \ldots, i_\ell+1\} \pmod{n}$.

Ex. If $\ell = 4$ and $\tau = 3 6 1 4 7 2 5$ then $\tau = 3 1 4 2 \coprod_{I} 6 7 5$. So $\tau' = 3 1 4 2 \coprod_{I+1} 6 7 5 = 6 3 7 1 4 5 2$.

$$\tau = \pi \coprod_{I} \sigma$$
 imples $\tau' = \pi \coprod_{I+1} \sigma$ for $\pi \in S_{\ell}$.

Ex. If $\ell = 4$ and $\tau = 3614725$ implies $\tau' = 6371452$.

$$\tau = \pi \coprod_{I} \sigma$$
 imples $\tau' = \pi \coprod_{I+1} \sigma$ for $\pi \in S_{\ell}$.

Ex. If $\ell = 4$ and $\tau = 3614725$ implies $\tau' = 6371452$.

Note. (a) f is bijective: for f^{-1} use I - 1.

$$\tau = \pi \coprod_{I} \sigma$$
 imples $\tau' = \pi \coprod_{I+1} \sigma$ for $\pi \in S_{\ell}$.

Ex. If $\ell = 4$ and $\tau = 3 \ 6 \ 1 \ 4 \ 7 \ 2 \ 5$ implies $\tau' = 6 \ 3 \ 7 \ 1 \ 4 \ 5 \ 2$.

Note. (a) f is bijective: for f^{-1} use I - 1.

(b) inv
$$\tau' - \operatorname{inv} \tau \equiv \ell \pmod{n}$$
.

$$\tau = \pi \coprod_{I} \sigma$$
 imples $\tau' = \pi \coprod_{I+1} \sigma$ for $\pi \in S_{\ell}$.

Ex. If $\ell = 4$ and $\tau = 3614725$ implies $\tau' = 6371452$.

Note. (a) f is bijective: for f^{-1} use I - 1.

- (b) inv $\tau' \operatorname{inv} \tau \equiv \ell(\operatorname{mod} n)$.
- (c) imaj τ' imaj $\tau = 0, \pm \ell \equiv 0 \pmod{\ell}$.

$$\tau = \pi \coprod_{I} \sigma$$
 imples $\tau' = \pi \coprod_{I+1} \sigma$ for $\pi \in S_{\ell}$.

Ex. If $\ell = 4$ and $\tau = 3614725$ implies $\tau' = 6371452$.

Note. (a) f is bijective: for f^{-1} use I - 1.

- (b) inv τ' inv $\tau \equiv \ell \pmod{n}$.
- (c) imaj τ' imaj $\tau = 0, \pm \ell \equiv 0 \pmod{\ell}$.

Now (b) and (c) imply that f restricts to

$$f: M(i,j) \rightarrow M(i+\ell,j).$$

$$\tau = \pi \coprod_{I} \sigma$$
 imples $\tau' = \pi \coprod_{I+1} \sigma$ for $\pi \in S_{\ell}$.

Ex. If $\ell = 4$ and $\tau = 3614725$ implies $\tau' = 6371452$.

Note. (a) f is bijective: for f^{-1} use I - 1.

- (b) inv $\tau' \operatorname{inv} \tau \equiv \ell \pmod{n}$.
- (c) imaj τ' imaj $\tau = 0, \pm \ell \equiv 0 \pmod{\ell}$.

Now (b) and (c) imply that f restricts to

$$f: M(i,j) \to M(i+\ell,j).$$

But $gcd(n, \ell) = 1$, so iterating f gives a bijection

$$M(i,j) \longleftrightarrow M(i+1,j).$$

Outline

The major index

The inversion number

Shuffles

The case $k = \ell$

Theorem

If $gcd(k, \ell) = 1$ and $d \ge 1$ with $kd, \ell d \le n$ then $m_n^{kd, \ell d}$ is composed of $d \times d$ blocks all equal to

$$\frac{1}{k\ell}m_n^{d,d}$$
.

Theorem

If $gcd(k, \ell) = 1$ and $d \ge 1$ with $kd, \ell d \le n$ then $m_n^{kd, \ell d}$ is composed of $d \times d$ blocks all equal to

$$\frac{1}{k\ell}m_n^{d,d}$$
.

Let μ and ϕ be the number-theoretic Möbius and Euler functions, respectively.

Theorem

If $1 \le i, j \le n$ then

$$m_n^{n,n}(i,j) = \frac{1}{n^2} \sum_{d|n} d^{n/d} \left(\frac{n}{d}\right)! \ \phi(d)^2 \ \frac{\mu\left(\frac{d}{\gcd(i,d)}\right) \mu\left(\frac{d}{\gcd(j,d)}\right)}{\phi\left(\frac{d}{\gcd(i,d)}\right) \phi\left(\frac{d}{\gcd(j,d)}\right)}.$$

Proof of $m_n^{n,n}(i,j) \stackrel{(*)}{=} \frac{1}{n^2} \sum_{d|n} d^{n/d} \left(\frac{n}{d}\right)! \phi(d)^2 \frac{\mu\left(\frac{d}{\gcd(i,d)}\right)\mu\left(\frac{d}{\gcd(j,d)}\right)}{\phi\left(\frac{d}{\gcd(j,d)}\right)\phi\left(\frac{d}{\gcd(j,d)}\right)}$.

Proof of
$$m_n^{n,n}(i,j) \stackrel{(*)}{=} \frac{1}{n^2} \sum_{d|n} d^{n/d} \left(\frac{n}{d}\right)! \phi(d)^2 \frac{\mu\left(\frac{d}{\gcd(i,d)}\right)\mu\left(\frac{d}{\gcd(j,d)}\right)}{\phi\left(\frac{d}{\gcd(i,d)}\right)\phi\left(\frac{d}{\gcd(j,d)}\right)}.$$

G = group generated by the cycle (1, 2, ..., n),

Proof of
$$m_n^{n,n}(i,j) \stackrel{(*)}{=} \frac{1}{n^2} \sum_{d|n} d^{n/d} \left(\frac{n}{d}\right)! \phi(d)^2 \frac{\mu\left(\frac{d}{\gcd(i,d)}\right)\mu\left(\frac{d}{\gcd(j,d)}\right)}{\phi\left(\frac{d}{\gcd(i,d)}\right)\phi\left(\frac{d}{\gcd(j,d)}\right)}$$
.

G = group generated by the cycle (1, 2, ..., n), $\omega = \text{primitive } n \text{th root of unity,}$

Proof of
$$m_n^{n,n}(i,j) \stackrel{(*)}{=} \frac{1}{n^2} \sum_{d|n} d^{n/d} \left(\frac{n}{d}\right)! \phi(d)^2 \frac{\mu\left(\frac{d}{\gcd(i,d)}\right)\mu\left(\frac{d}{\gcd(j,d)}\right)}{\phi\left(\frac{d}{\gcd(i,d)}\right)\phi\left(\frac{d}{\gcd(j,d)}\right)}$$
.

G = group generated by the cycle (1, 2, ..., n),

 $\omega = \text{primitive } n \text{th root of unity,}$

 χ_i = the *G*-character for ω^i induced up to S_n .

The right side of (*) is the inner product $\langle \chi_i, \chi_j \rangle$ by a formula of FOULKES (1972).

Proof of
$$m_n^{n,n}(i,j) \stackrel{(*)}{=} \frac{1}{n^2} \sum_{d|n} d^{n/d} \left(\frac{n}{d}\right)! \phi(d)^2 \frac{\mu\left(\frac{d}{\gcd(i,d)}\right)\mu\left(\frac{d}{\gcd(j,d)}\right)}{\phi\left(\frac{d}{\gcd(i,d)}\right)\phi\left(\frac{d}{\gcd(j,d)}\right)}$$
.

G = group generated by the cycle (1, 2, ..., n),

 $\omega = \text{primitive } n \text{th root of unity,}$

 χ_i = the *G*-character for ω^i induced up to S_n .

The right side of (*) is the inner product $\langle \chi_i, \chi_j \rangle$ by a formula of FOULKES (1972). Let

 $f_i^{\lambda} = \#$ of standard Young tableaux T of shape λ with maj $T \equiv i \pmod{n}$.

Proof of
$$m_n^{n,n}(i,j) \stackrel{(*)}{=} \frac{1}{n^2} \sum_{d|n} d^{n/d} \left(\frac{n}{d}\right)! \phi(d)^2 \frac{\mu\left(\frac{d}{\gcd(i,d)}\right)\mu\left(\frac{d}{\gcd(j,d)}\right)}{\phi\left(\frac{d}{\gcd(i,d)}\right)\phi\left(\frac{d}{\gcd(j,d)}\right)}$$
.

G = group generated by the cycle (1, 2, ..., n),

 $\omega = \text{primitive } n \text{th root of unity,}$

 χ_i = the *G*-character for ω^i induced up to S_n .

The right side of (*) is the inner product $\langle \chi_i, \chi_j \rangle$ by a formula of FOULKES (1972). Let

 $f_i^{\lambda} = \#$ of standard Young tableaux T of shape λ with maj $T \equiv i \pmod{n}$.

By decomposing into irreducibles, STANLEY (1999) shows

$$\langle \chi_i, \chi_j \rangle = \sum_{\lambda \vdash n} f_i^{\lambda} f_j^{\lambda}$$

Proof of
$$m_n^{n,n}(i,j) \stackrel{(*)}{=} \frac{1}{n^2} \sum_{d|n} d^{n/d} \left(\frac{n}{d}\right)! \phi(d)^2 \frac{\mu\left(\frac{d}{\gcd(i,d)}\right)\mu\left(\frac{d}{\gcd(j,d)}\right)}{\phi\left(\frac{d}{\gcd(i,d)}\right)\phi\left(\frac{d}{\gcd(j,d)}\right)}$$
.

G = group generated by the cycle (1, 2, ..., n),

 $\omega = \text{primitive } n \text{th root of unity,}$

 χ_i = the *G*-character for ω^i induced up to S_n .

The right side of (*) is the inner product $\langle \chi_i, \chi_j \rangle$ by a formula of FOULKES (1972). Let

 $f_i^{\lambda} = \#$ of standard Young tableaux T of shape λ with maj $T \equiv i \pmod{n}$.

By decomposing into irreducibles, STANLEY (1999) shows

$$\langle \chi_i, \chi_j \rangle = \sum_{\lambda \vdash n} f_i^{\lambda} f_j^{\lambda} \stackrel{\text{RSK}}{=} m_n^{n,n}(i,j).$$

 $m_n^{n,n}(i,j) \stackrel{(*)}{=} \frac{1}{n^2} \sum_{d|n} d^{n/d} \left(\frac{n}{d} \right)! \phi(d)^2 \frac{\mu\left(\frac{d}{\gcd(i,d)} \right) \mu\left(\frac{d}{\gcd(i,d)} \right)}{\phi\left(\frac{d}{\gcd(i,d)} \right) \phi\left(\frac{d}{\gcd(i,d)} \right)}.$

$$m_n^{n,n}(i,j) \stackrel{(*)}{=} \frac{1}{n^2} \sum_{d|n} d^{n/d} \left(\frac{n}{d}\right)! \phi(d)^2 \frac{\mu\left(\frac{d}{\gcd(i,d)}\right)\mu\left(\frac{d}{\gcd(j,d)}\right)}{\phi\left(\frac{d}{\gcd(i,d)}\right)\phi\left(\frac{d}{\gcd(j,d)}\right)}.$$

If $k = \ell = p^r$ for p prime, then (*) simplifies. Let $J_{k,\ell} = \text{the } k \times \ell \text{ matrix of all ones.}$

$$m_n^{n,n}(i,j) \stackrel{(*)}{=} \frac{1}{n^2} \sum_{d|n} d^{n/d} \left(\frac{n}{d}\right)! \phi(d)^2 \frac{\mu\left(\frac{d}{\gcd(i,d)}\right)\mu\left(\frac{d}{\gcd(j,d)}\right)}{\phi\left(\frac{d}{\gcd(i,d)}\right)\phi\left(\frac{d}{\gcd(j,d)}\right)}.$$

If $k = \ell = p^r$ for p prime, then (*) simplifies. Let

$$J_{k,\ell}$$
 = the $k \times \ell$ matrix of all ones.

By induction on *n* we can prove the following result.

Theorem

For each prime p, there are sequences $(q_n)_{n\geq 1}$, $(r_n)_{n\geq 1}$, and $(s_n)_{n\geq 1}$ such that

$$m_{np}^{p,p} = \begin{bmatrix} q_n J_{1,1} & r_n J_{1,p-1} \\ r_n J_{p-1,1} & s_n J_{p-1,p-1} \end{bmatrix}.$$

