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The inversion number of 7 is

invr = #{(aj,q) : i<j and a > a}.
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We say maj and inv are equidistributed, i.e., have the same
generating function. So are (maj,imaj) and (inv,imaj).
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Note. (a) f is bijective: for f~ use | — 1.

(b) inv 7’ —inv T = ¢(modn).

(c) imaj7’ —imajT = 0,+¢ = 0 (mod¥).

Now (b) and (c) imply that f restricts to
f:M(i,j) = M(i + £,)).

But gcd(n, ¢) = 1, so iterating f gives a bijection

M(@i,j) — M@ +1,j). m
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Let 1 and ¢ be the number-theoretic Mobius and Euler
functions, respectively.

Theorem
If 1 <i,j <nthen
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If k = ¢ = p" for p prime, then (x) simplifies. Let

Jk¢ = the k x ¢ matrix of all ones.
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mp"(i,§) = & Y and™e (§)! 6(d)? ”<g°“'*d’)“<g°“<&d>>.
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If k = ¢ = p" for p prime, then (x) simplifies. Let
Jk¢ = the k x ¢ matrix of all ones.

By induction on n we can prove the following result.

Theorem
For each prime p, there are sequences (gn)n>1, (f'n)n>1, and
(Sn)n>1 such that

meP — | Ondir Tdipa
P d Sn J
nvp-1,1 nvp-1p-1
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