Permutation Patterns and Statistics

Bruce Sagan
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027
sagan@math.msu.edu
www.math.msu.edu/~sagan

joint work with

T. Dokos (UCLA), T. Dwyer (Dartmouth), B. Johnson (Michigan State), and K. Selsor (U. South Carolina)

March 14, 2014

Pattern containment and avoidance

Permutation statistics: inversions

Permutation statistics: major index

q-Catalan numbers

Exercises and References

Outline

Pattern containment and avoidance

Permutation statistics: inversions

Permutation statistics: major index

q-Catalan numbers

Exercises and References

Ex. The sequences $\pi = 132$ and $\sigma = 485$ are order isomorphic.

Ex. The sequences $\pi = 132$ and $\sigma = 485$ are order isomorphic. Let \mathfrak{S}_n be the *symmetric group* of all permutations of $\{1, \ldots, n\}$.

$$\#\mathfrak{S}_n=n!$$

Ex. The sequences $\pi = 132$ and $\sigma = 485$ are order isomorphic. Let \mathfrak{S}_n be the *symmetric group* of all permutations of $\{1, \ldots, n\}$.

$$\#\mathfrak{S}_n=n!$$

Let $\mathfrak{S} = \cup_{n \geq 0} \mathfrak{S}_n$.

Ex. The sequences $\pi = 132$ and $\sigma = 485$ are order isomorphic. Let \mathfrak{S}_n be the *symmetric group* of all permutations of $\{1, \ldots, n\}$.

$$\#\mathfrak{S}_n = n!$$

Let $\mathfrak{S} = \bigcup_{n \geq 0} \mathfrak{S}_n$. If $\pi, \sigma \in \mathfrak{S}$ then σ contains π as a pattern if there is a subsequence σ' of σ order isomorphic to π .

$$a_i < a_j \iff b_i < b_j.$$

Ex. The sequences $\pi = 132$ and $\sigma = 485$ are order isomorphic. Let \mathfrak{S}_n be the *symmetric group* of all permutations of $\{1, \ldots, n\}$.

$$\#\mathfrak{S}_n=n!$$

Let $\mathfrak{S} = \bigcup_{n \geq 0} \mathfrak{S}_n$. If $\pi, \sigma \in \mathfrak{S}$ then σ contains π as a pattern if there is a subsequence σ' of σ order isomorphic to π . Ex. $\sigma = 42183756$ contains $\pi = 132$ because of $\sigma' = 485$.

$$a_i < a_j \iff b_i < b_j.$$

Ex. The sequences $\pi = 132$ and $\sigma = 485$ are order isomorphic. Let \mathfrak{S}_n be the *symmetric group* of all permutations of $\{1, \ldots, n\}$.

$$\#\mathfrak{S}_n=n!$$

Let $\mathfrak{S} = \bigcup_{n \geq 0} \mathfrak{S}_n$. If $\pi, \sigma \in \mathfrak{S}$ then σ contains π as a pattern if there is a subsequence σ' of σ order isomorphic to π . Ex. $\sigma = 42183756$ contains $\pi = 132$ because of $\sigma' = 485$.

We say σ avoids π if σ does not contain π and let

$$\mathsf{Av}_n(\pi) = \{ \sigma \in \mathfrak{S}_n : \sigma \text{ avoids } \pi \}.$$

$$a_i < a_j \iff b_i < b_j.$$

Ex. The sequences $\pi = 132$ and $\sigma = 485$ are order isomorphic. Let \mathfrak{S}_n be the *symmetric group* of all permutations of $\{1, \ldots, n\}$.

$$\#\mathfrak{S}_n=n!$$

Let $\mathfrak{S} = \bigcup_{n \geq 0} \mathfrak{S}_n$. If $\pi, \sigma \in \mathfrak{S}$ then σ contains π as a pattern if there is a subsequence σ' of σ order isomorphic to π . Ex. $\sigma = 42183756$ contains $\pi = 132$ because of $\sigma' = 485$.

We say σ avoids π if σ does not contain π and let

$$\mathsf{Av}_n(\pi) = \{ \sigma \in \mathfrak{S}_n : \sigma \text{ avoids } \pi \}.$$

Ex. If $\pi \in \mathfrak{S}_k$ then $\mathsf{Av}_k(\pi)$

$$a_i < a_j \iff b_i < b_j$$
.

Ex. The sequences $\pi = 132$ and $\sigma = 485$ are order isomorphic. Let \mathfrak{S}_n be the *symmetric group* of all permutations of $\{1, \ldots, n\}$.

$$\#\mathfrak{S}_n=n!$$

Let $\mathfrak{S} = \bigcup_{n \geq 0} \mathfrak{S}_n$. If $\pi, \sigma \in \mathfrak{S}$ then σ contains π as a pattern if there is a subsequence σ' of σ order isomorphic to π .

Ex. $\sigma = 42183756$ contains $\pi = 132$ because of $\sigma' = 485$.

We say σ avoids π if σ does not contain π and let

$$\mathsf{Av}_n(\pi) = \{ \sigma \in \mathfrak{S}_n : \sigma \text{ avoids } \pi \}.$$

Ex. If $\pi \in \mathfrak{S}_k$ then $Av_k(\pi) = \mathfrak{S}_k - \{\pi\}$.

$$a_i < a_j \iff b_i < b_j.$$

Ex. The sequences $\pi = 132$ and $\sigma = 485$ are order isomorphic. Let \mathfrak{S}_n be the *symmetric group* of all permutations of $\{1, \ldots, n\}$.

$$\#\mathfrak{S}_n=n!$$

Let $\mathfrak{S} = \bigcup_{n \geq 0} \mathfrak{S}_n$. If $\pi, \sigma \in \mathfrak{S}$ then σ contains π as a pattern if there is a subsequence σ' of σ order isomorphic to π . Ex. $\sigma = 42183756$ contains $\pi = 132$ because of $\sigma' = 485$.

We say σ avoids π if σ does not contain π and let

$$\mathsf{Av}_n(\pi) = \{ \sigma \in \mathfrak{S}_n : \sigma \text{ avoids } \pi \}.$$

Ex. If $\pi \in \mathfrak{S}_k$ then $\operatorname{Av}_k(\pi) = \mathfrak{S}_k - \{\pi\}$. Say that π and π' are *Wilf equivalent*, $\pi \equiv \pi'$, if for all $n \geq 0$ $\#\operatorname{Av}_n(\pi) = \#\operatorname{Av}_n(\pi')$.

$$a_i < a_j \iff b_i < b_j.$$

Ex. The sequences $\pi = 132$ and $\sigma = 485$ are order isomorphic. Let \mathfrak{S}_n be the *symmetric group* of all permutations of $\{1,\ldots,n\}$.

$$\#\mathfrak{S}_n = n!$$

Let $\mathfrak{S} = \bigcup_{n \geq 0} \mathfrak{S}_n$. If $\pi, \sigma \in \mathfrak{S}$ then σ contains π as a pattern if there is a subsequence σ' of σ order isomorphic to π . Ex. $\sigma = 42183756$ contains $\pi = 132$ because of $\sigma' = 485$.

We say σ avoids π if σ does not contain π and let

$$\mathsf{Av}_n(\pi) = \{ \sigma \in \mathfrak{S}_n : \sigma \text{ avoids } \pi \}.$$

Ex. If $\pi \in \mathfrak{S}_k$ then $\mathsf{Av}_k(\pi) = \mathfrak{S}_k - \{\pi\}$.

Say that π and π' are Wilf equivalent, $\pi \equiv \pi'$, if for all n > 0

$$\#\operatorname{Av}_n(\pi) = \#\operatorname{Av}_n(\pi').$$

Theorem (Knuth, 1973)

For any $\pi \in \mathfrak{S}_3$ and $n \geq 0$: $\# \operatorname{Av}_n(\pi) = C_n$ (Catalan number).

For any $\pi \in \mathfrak{S}_3$ and all $n \geq 0$ we have $\# \operatorname{Av}_n(\pi) = C_n$.

For any $\pi \in \mathfrak{S}_3$ and all $n \geq 0$ we have $\# \operatorname{Av}_n(\pi) = C_n$.

$$C_n=\frac{1}{n+1}\binom{2n}{n}.$$

For any $\pi \in \mathfrak{S}_3$ and all $n \geq 0$ we have $\# \operatorname{Av}_n(\pi) = C_n$.

$$C_n=\frac{1}{n+1}\binom{2n}{n}.$$

So
$$C_0=1,\ C_1=1,\ C_2=2,\ C_3=5,\ C_4=14,\ C_5=42,\ \dots$$

For any $\pi \in \mathfrak{S}_3$ and all $n \geq 0$ we have $\# \operatorname{Av}_n(\pi) = C_n$.

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

So
$$C_0=1,\ C_1=1,\ C_2=2,\ C_3=5,\ C_4=14,\ C_5=42,\ \dots$$

Ex.
$$Av_3(123) = \{132, 213, 231, 312, 321\} = \mathfrak{S}_3 - \{123\}$$

For any $\pi \in \mathfrak{S}_3$ and all $n \geq 0$ we have $\# \operatorname{Av}_n(\pi) = C_n$.

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

So
$$C_0=1,\ C_1=1,\ C_2=2,\ C_3=5,\ C_4=14,\ C_5=42,\ \dots$$

Ex.
$$Av_3(123) = \{132, 213, 231, 312, 321\} = \mathfrak{S}_3 - \{123\}$$
 so $\# Av_3(123) = 5 = C_3$.

For any $\pi \in \mathfrak{S}_3$ and all $n \geq 0$ we have $\# \operatorname{Av}_n(\pi) = C_n$.

The nth Catalan number is

$$C_n=\frac{1}{n+1}\binom{2n}{n}.$$

So
$$C_0=1,\ C_1=1,\ C_2=2,\ C_3=5,\ C_4=14,\ C_5=42,\ \dots$$

Ex. Av₃(123) = {132, 213, 231, 312, 321} = \mathfrak{S}_3 - {123} so # Av₃(123) = 5 = \mathbb{C}_3 . Similarly # Av₃(π) = 5 = \mathbb{C}_3 , for any $\pi \in \mathfrak{S}_3$ so we have shown Knuth's Theorem holds for n = 3.

For any $\pi \in \mathfrak{S}_3$ and all $n \geq 0$ we have $\# \operatorname{Av}_n(\pi) = C_n$.

The nth Catalan number is

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

So
$$C_0=1,\ C_1=1,\ C_2=2,\ C_3=5,\ C_4=14,\ C_5=42,\ \dots$$

Ex. Av₃(123) = {132, 213, 231, 312, 321} = \mathfrak{S}_3 - {123} so # Av₃(123) = 5 = \mathbb{C}_3 . Similarly # Av₃(π) = 5 = \mathbb{C}_3 , for any $\pi \in \mathfrak{S}_3$ so we have shown Knuth's Theorem holds for n = 3.

For
$$n \ge 1$$
: $C_n = C_0 C_{n-1} + C_1 C_{n-2} + C_2 C_{n-3} + \cdots + C_{n-1} C_0$.

For any $\pi \in \mathfrak{S}_3$ and all $n \geq 0$ we have $\# \operatorname{Av}_n(\pi) = C_n$.

The nth Catalan number is

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

So
$$C_0=1,\ C_1=1,\ C_2=2,\ C_3=5,\ C_4=14,\ C_5=42,\ \dots$$

Ex. Av₃(123) = {132, 213, 231, 312, 321} = \mathfrak{S}_3 - {123} so # Av₃(123) = 5 = \mathbb{C}_3 . Similarly # Av₃(π) = 5 = \mathbb{C}_3 , for any $\pi \in \mathfrak{S}_3$ so we have shown Knuth's Theorem holds for n = 3.

For
$$n \ge 1$$
: $C_n = C_0 C_{n-1} + C_1 C_{n-2} + C_2 C_{n-3} + \cdots + C_{n-1} C_0$.

Ex.
$$C_3 = C_0 C_2 + C_1 C_1 + C_2 C_0$$

For any $\pi \in \mathfrak{S}_3$ and all $n \geq 0$ we have $\# \operatorname{Av}_n(\pi) = C_n$.

The nth Catalan number is

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

So
$$C_0=1,\ C_1=1,\ C_2=2,\ C_3=5,\ C_4=14,\ C_5=42,\ \dots$$

Ex. Av₃(123) = {132, 213, 231, 312, 321} = \mathfrak{S}_3 - {123} so # Av₃(123) = 5 = \mathbb{C}_3 . Similarly # Av₃(π) = 5 = \mathbb{C}_3 , for any $\pi \in \mathfrak{S}_3$ so we have shown Knuth's Theorem holds for n = 3.

For
$$n \ge 1$$
: $C_n = C_0 C_{n-1} + C_1 C_{n-2} + C_2 C_{n-3} + \cdots + C_{n-1} C_0$.

Ex.
$$C_3 = C_0 C_2 + C_1 C_1 + C_2 C_0 = 1 \cdot 2 + 1 \cdot 1 + 2 \cdot 1$$

For any $\pi \in \mathfrak{S}_3$ and all $n \geq 0$ we have $\# \operatorname{Av}_n(\pi) = C_n$.

The nth Catalan number is

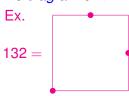
$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

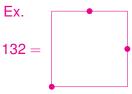
So
$$C_0=1,\ C_1=1,\ C_2=2,\ C_3=5,\ C_4=14,\ C_5=42,\ \dots$$

Ex. Av₃(123) = {132, 213, 231, 312, 321} = \mathfrak{S}_3 - {123} so # Av₃(123) = 5 = \mathbb{C}_3 . Similarly # Av₃(π) = 5 = \mathbb{C}_3 , for any $\pi \in \mathfrak{S}_3$ so we have shown Knuth's Theorem holds for n = 3.

For
$$n \ge 1$$
: $C_n = C_0 C_{n-1} + C_1 C_{n-2} + C_2 C_{n-3} + \cdots + C_{n-1} C_0$.

Ex.
$$C_3 = C_0C_2 + C_1C_1 + C_2C_0 = 1 \cdot 2 + 1 \cdot 1 + 2 \cdot 1 = 5$$
.

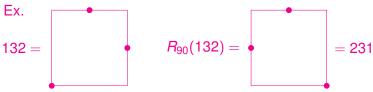




The dihedral group D_4 of symmetries of the square acts on \mathfrak{S}_n :

$$D_4 = \{R_0, R_{90}, R_{180}, R_{270}, r_0, r_1, r_{-1}, r_{\infty}\}$$

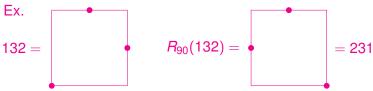
where R_{θ} is rotation counter-clockwise through θ degrees and r_m is reflection in a line of slope m.



The dihedral group D_4 of symmetries of the square acts on \mathfrak{S}_n :

$$D_4 = \{R_0, R_{90}, R_{180}, R_{270}, r_0, r_1, r_{-1}, r_{\infty}\}$$

where R_{θ} is rotation counter-clockwise through θ degrees and r_m is reflection in a line of slope m.

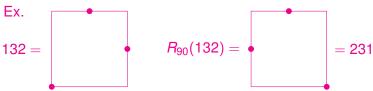


The dihedral group D_4 of symmetries of the square acts on \mathfrak{S}_n :

$$D_4 = \{R_0, R_{90}, R_{180}, R_{270}, r_0, r_1, r_{-1}, r_{\infty}\}$$

where R_{θ} is rotation counter-clockwise through θ degrees and r_m is reflection in a line of slope m. Note that for any $\rho \in D_4$:

$$\sigma$$
 contains $\pi \iff \rho(\sigma)$ contains $\rho(\pi)$,



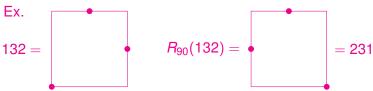
The dihedral group D_4 of symmetries of the square acts on \mathfrak{S}_n :

$$D_4 = \{R_0, R_{90}, R_{180}, R_{270}, r_0, r_1, r_{-1}, r_{\infty}\}$$

where R_{θ} is rotation counter-clockwise through θ degrees and r_m is reflection in a line of slope m. Note that for any $\rho \in D_4$:

$$\sigma$$
 contains π \iff $\rho(\sigma)$ contains $\rho(\pi)$,

$$\therefore$$
 σ avoids π \iff $\rho(\sigma)$ avoids $\rho(\pi)$.



The dihedral group D_4 of symmetries of the square acts on \mathfrak{S}_n :

$$D_4 = \{R_0, R_{90}, R_{180}, R_{270}, r_0, r_1, r_{-1}, r_{\infty}\}$$

where R_{θ} is rotation counter-clockwise through θ degrees and r_m is reflection in a line of slope m. Note that for any $\rho \in D_4$:

$$\sigma$$
 contains $\pi \iff \rho(\sigma)$ contains $\rho(\pi)$,
 $\therefore \sigma$ avoids $\pi \iff \rho(\sigma)$ avoids $\rho(\pi)$.
 $\therefore \# \mathsf{Av}_n(\pi) = \# \mathsf{Av}_n(\rho(\pi))$.

Ex.
$$R_{90}(132) = = 231$$

The dihedral group D_4 of symmetries of the square acts on \mathfrak{S}_n :

$$D_4 = \{R_0, R_{90}, R_{180}, R_{270}, r_0, r_1, r_{-1}, r_{\infty}\}$$

where R_{θ} is rotation counter-clockwise through θ degrees and r_m is reflection in a line of slope m. Note that for any $\rho \in D_4$:

$$\sigma$$
 contains $\pi \iff \rho(\sigma)$ contains $\rho(\pi)$,

$$\therefore$$
 σ avoids π \iff $\rho(\sigma)$ avoids $\rho(\pi)$.

$$\therefore \# \mathsf{Av}_n(\pi) = \# \mathsf{Av}_n(\rho(\pi)).$$

Proposition

For any $\rho \in D_4$ and any permutation π we have

$$\rho(\pi) \equiv \pi$$
.

Outline

Pattern containment and avoidance

Permutation statistics: inversions

Permutation statistics: major index

q-Catalan numbers

Exercises and References

A *permutation statistic* is st : $\mathfrak{S} \rightarrow \{0, 1, 2, \ldots\}$.

A permutation statistic is st : $\mathfrak{S} \to \{0, 1, 2, ...\}$. The inversion number of $\pi = a_1 ... a_n$ is

inv
$$\pi = \#\{(i,j) : i < j \text{ and } a_i > a_j\}.$$

A permutation statistic is st : $\mathfrak{S} \to \{0, 1, 2, ...\}$. The inversion number of $\pi = a_1 ... a_n$ is

inv
$$\pi = \#\{(i,j) : i < j \text{ and } a_i > a_j\}.$$

Ex. If $\pi = 24135$ then inv $\pi = \#\{(1,3), (2,3), (2,4)\} = 3$.

inv
$$\pi = \#\{(i,j) : i < j \text{ and } a_i > a_j\}.$$

Ex. If $\pi=24135$ then inv $\pi=\#\{(1,3),\ (2,3),\ (2,4)\}=3$. Consider the generating function

$$I_n(q) = \sum_{\sigma \in \mathfrak{S}_n} q^{\mathsf{inv}\,\pi}.$$

inv
$$\pi = \#\{(i,j) : i < j \text{ and } a_i > a_j\}.$$

Ex. If $\pi = 24135$ then inv $\pi = \#\{(1,3), (2,3), (2,4)\} = 3$. Consider the generating function

$$I_n(q) = \sum_{\sigma \in \mathfrak{S}_n} q^{\mathsf{inv}\,\pi}.$$

inv
$$\pi = \#\{(i,j) : i < j \text{ and } a_i > a_j\}.$$

Ex. If $\pi = 24135$ then inv $\pi = \#\{(1,3), (2,3), (2,4)\} = 3$. Consider the generating function

$$I_n(q) = \sum_{\sigma \in \mathfrak{S}_n} q^{\mathsf{inv}\,\pi}.$$

Ex. When n = 3,

 π : 123 132 213 231 312 321

inv
$$\pi = \#\{(i,j) : i < j \text{ and } a_i > a_j\}.$$

Ex. If $\pi=24135$ then inv $\pi=\#\{(1,3),\ (2,3),\ (2,4)\}=3$. Consider the generating function

$$I_n(q) = \sum_{\sigma \in \mathfrak{S}_n} q^{\mathsf{inv}\,\pi}.$$

$$\pi$$
 : 123 132 213 231 312 321 inv π : 0 1 1 2 2 3

inv
$$\pi = \#\{(i,j) : i < j \text{ and } a_i > a_j\}.$$

Ex. If $\pi=24135$ then inv $\pi=\#\{(1,3),\ (2,3),\ (2,4)\}=3$. Consider the generating function

$$I_n(q) = \sum_{\sigma \in \mathfrak{S}_n} q^{\mathsf{inv}\,\pi}.$$

$$\pi$$
 : 123 132 213 231 312 321 inv π : 0 1 1 2 2 3 $I_3(q) = q^0 + q^1 + q^1 + q^2 + q^2 + q^3$.

inv
$$\pi = \#\{(i,j) : i < j \text{ and } a_i > a_j\}.$$

Ex. If $\pi=24135$ then inv $\pi=\#\{(1,3),\ (2,3),\ (2,4)\}=3.$ Consider the generating function

$$I_n(q) = \sum_{\sigma \in \mathfrak{S}_n} q^{\mathsf{inv}\,\pi}.$$

$$\pi$$
 : 123 132 213 231 312 321 inv π : 0 1 1 2 2 3 $I_3(q)$ = q^0 + q^1 + q^1 + q^2 + q^2 + q^3 .

So
$$I_3(q) = 1 + 2q + 2q^2 + q^3$$

inv
$$\pi = \#\{(i,j) : i < j \text{ and } a_i > a_j\}.$$

Ex. If $\pi = 24135$ then inv $\pi = \#\{(1,3), (2,3), (2,4)\} = 3$. Consider the generating function

$$I_n(q) = \sum_{\sigma \in \mathfrak{S}_n} q^{\mathsf{inv}\,\pi}.$$

$$\pi$$
 : 123 132 213 231 312 321 $\ln v \pi$: 0 1 1 2 2 3 $l_3(q) = q^0 + q^1 + q^1 + q^2 + q^2 + q^3$.

So
$$I_3(q) = 1 + 2q + 2q^2 + q^3 = (1)(1+q)(1+q+q^2)$$
.

inv
$$\pi = \#\{(i,j) : i < j \text{ and } a_i > a_j\}.$$

Ex. If $\pi=24135$ then inv $\pi=\#\{(1,3),\ (2,3),\ (2,4)\}=3.$ Consider the generating function

$$I_n(q) = \sum_{\sigma \in \mathfrak{S}_n} q^{\mathsf{inv}\,\pi}.$$

$$\pi$$
 : 123 132 213 231 312 321 inv π : 0 1 1 2 2 3 $I_3(q) = q^0 + q^1 + q^1 + q^2 + q^2 + q^3$.

So
$$I_3(q) = 1 + 2q + 2q^2 + q^3 = (1)(1+q)(1+q+q^2)$$
.
Theorem (Rodrigues, 1839)

$$I_n(q) = 1(1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1})$$

inv
$$\pi = \#\{(i,j) : i < j \text{ and } a_i > a_j\}.$$

Ex. If $\pi=24135$ then inv $\pi=\#\{(1,3),\ (2,3),\ (2,4)\}=3.$ Consider the generating function

$$I_n(q) = \sum_{\sigma \in \mathfrak{S}_n} q^{\mathsf{inv}\,\pi}.$$

Ex. When n = 3,

$$\pi$$
 : 123 132 213 231 312 321 inv π : 0 1 1 2 2 3 $I_3(q)$ = q^0 + q^1 + q^1 + q^2 + q^2 + q^3 .

So
$$I_3(q) = 1 + 2q + 2q^2 + q^3 = (1)(1+q)(1+q+q^2)$$
.

Theorem (Rodrigues, 1839)

$$I_n(q) = 1(1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1}) \stackrel{\text{def}}{=} [n]_q!$$

inv
$$\pi = \#\{(i,j) : i < j \text{ and } a_i > a_i\}.$$

Ex. If $\pi=24135$ then inv $\pi=\#\{(1,3),\ (2,3),\ (2,4)\}=3$. Consider the generating function

$$I_n(q) = \sum_{\sigma \in \mathfrak{S}_n} q^{\mathsf{inv}\,\pi}.$$

Ex. When n = 3,

$$\pi$$
 : 123 132 213 231 312 321 inv π : 0 1 1 2 2 3 $I_3(q) = q^0 + q^1 + q^1 + q^2 + q^2 + q^3$.

So
$$I_3(q) = 1 + 2q + 2q^2 + q^3 = (1)(1+q)(1+q+q^2)$$
.

Theorem (Rodrigues, 1839)

$$I_n(q) = 1(1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1}) \stackrel{\text{def}}{=} [n]_q!$$

We call $[n]_q!$ a *q-analogue* of n! since $[n]_1! = n!$

$$I_n(\pi;q) = \sum_{\sigma \in \mathsf{Av}_n(\pi)} q^{\mathsf{inv}\,\sigma}.$$

$$I_n(\pi;q) = \sum_{\sigma \in \mathsf{Av}_n(\pi)} q^{\mathsf{inv}\,\sigma}.$$

Call π and π' inv-Wilf equivalent, $\pi \stackrel{\text{inv}}{\equiv} \pi'$, if $I_n(\pi; q) = I_n(\pi'; q)$ for all n > 0.

$$I_n(\pi;q) = \sum_{\sigma \in \mathsf{AV}_n(\pi)} q^{\mathsf{inv}\,\sigma}.$$

Call π and π' inv-Wilf equivalent, $\pi \stackrel{\text{inv}}{\equiv} \pi'$, if $I_n(\pi; q) = I_n(\pi'; q)$ for all $n \geq 0$. This implies $\pi \equiv \pi'$

$$I_n(\pi;q) = \sum_{\sigma \in \mathsf{AV}_n(\pi)} q^{\mathsf{inv}\,\sigma}.$$

Call π and π' inv-Wilf equivalent, $\pi \stackrel{\text{inv}}{\equiv} \pi'$, if $I_n(\pi; q) = I_n(\pi'; q)$ for all $n \geq 0$. This implies $\pi \equiv \pi'$ since

$$I_n(\pi;1)=I_n(\pi';1)$$

$$I_n(\pi;q) = \sum_{\sigma \in \mathsf{AV}_n(\pi)} q^{\mathsf{inv}\,\sigma}.$$

Call π and π' inv-Wilf equivalent, $\pi \stackrel{\text{inv}}{\equiv} \pi'$, if $I_n(\pi; q) = I_n(\pi'; q)$ for all $n \geq 0$. This implies $\pi \equiv \pi'$ since

$$\# Av_n(\pi) = I_n(\pi; 1) = I_n(\pi'; 1)$$

$$I_n(\pi;q) = \sum_{\sigma \in \mathsf{AV}_n(\pi)} q^{\mathsf{inv}\,\sigma}.$$

Call π and π' inv-Wilf equivalent, $\pi \stackrel{\text{inv}}{\equiv} \pi'$, if $I_n(\pi; q) = I_n(\pi'; q)$ for all $n \geq 0$. This implies $\pi \equiv \pi'$ since $\# \operatorname{Av}_n(\pi) = I_n(\pi; 1) = I_n(\pi'; 1) = \# \operatorname{Av}_n(\pi').$

$$I_n(\pi;q) = \sum_{\sigma \in \mathsf{Av}_n(\pi)} q^{\mathsf{inv}\,\sigma}.$$

Call π and π' inv-Wilf equivalent, $\pi \stackrel{\text{inv}}{\equiv} \pi'$, if $I_n(\pi; q) = I_n(\pi'; q)$ for all $n \geq 0$. This implies $\pi \equiv \pi'$ since

$$\# Av_n(\pi) = I_n(\pi; 1) = I_n(\pi'; 1) = \# Av_n(\pi').$$

Note that (i,j) is an inversion of π iff the line connecting the corresponding points in the diagram of π has negative slope.

$$I_n(\pi; q) = \sum_{\sigma \in \mathsf{Av}_n(\pi)} q^{\mathsf{inv}\,\sigma}.$$

Call π and π' inv-Wilf equivalent, $\pi \stackrel{\text{inv}}{\equiv} \pi'$, if $I_n(\pi; q) = I_n(\pi'; q)$ for all $n \geq 0$. This implies $\pi \equiv \pi'$ since

$$\# Av_n(\pi) = I_n(\pi; 1) = I_n(\pi'; 1) = \# Av_n(\pi').$$

Note that (i,j) is an inversion of π iff the line connecting the corresponding points in the diagram of π has negative slope.

Proposition (DDJSS)

Let $\pi \in \mathfrak{S}$ and $\rho \in D_4$. Then

inv
$$\rho(\pi) = \text{inv } \pi \iff \rho \in \{R_0, R_{180}, r_1, r_{-1}\}.$$

$$I_n(\pi; q) = \sum_{\sigma \in \mathsf{Av}_n(\pi)} q^{\mathsf{inv}\,\sigma}.$$

Call π and π' inv-Wilf equivalent, $\pi \stackrel{\text{inv}}{\equiv} \pi'$, if $I_n(\pi; q) = I_n(\pi'; q)$ for all $n \geq 0$. This implies $\pi \equiv \pi'$ since

$$\# Av_n(\pi) = I_n(\pi; 1) = I_n(\pi'; 1) = \# Av_n(\pi').$$

Note that (i,j) is an inversion of π iff the line connecting the corresponding points in the diagram of π has negative slope.

Proposition (DDJSS)

Let $\pi \in \mathfrak{S}$ and $\rho \in D_4$. Then

$$\operatorname{inv} \rho(\pi) = \operatorname{inv} \pi \iff \rho \in \{R_0, R_{180}, r_1, r_{-1}\}.$$

So for $\rho \in \{R_0, R_{180}, r_1, r_{-1}\}$ we have

$$\rho(\pi) \stackrel{\text{inv}}{\equiv} \pi.$$

Theorem (DDJSS)

The inv-Wilf equivalence classes for $\pi \in \mathfrak{S}_3$ are

```
 \begin{array}{lll} [123]_{inv} & = & \{123\}, \\ [321]_{inv} & = & \{321\}, \\ [132]_{inv} & = & \{132,213\}, \\ [231]_{inv} & = & \{231,312\}. \end{array}
```

Theorem (DDJSS)

The inv-Wilf equivalence classes for $\pi \in \mathfrak{S}_3$ are

```
 \begin{array}{lll} [123]_{inv} & = & \{123\}, \\ [321]_{inv} & = & \{321\}, \\ [132]_{inv} & = & \{132,213\}, \\ [231]_{inv} & = & \{231,312\}. \end{array}
```

Proof. The two equivalences follow from the proposition:

$$213 = R_{180}(132)$$
 and $312 = R_{180}(231)$.

Theorem (DDJSS)

The inv-Wilf equivalence classes for $\pi \in \mathfrak{S}_3$ are

$$\begin{array}{lll} [123]_{inv} & = & \{123\}, \\ [321]_{inv} & = & \{321\}, \\ [132]_{inv} & = & \{132,213\}, \\ [231]_{inv} & = & \{231,312\}. \end{array}$$

Proof. The two equivalences follow from the proposition:

$$213 = R_{180}(132)$$
 and $312 = R_{180}(231)$.

To see that there are no others, note that for $\pi \in \mathfrak{S}_k$

$$I_k(\pi;q)$$

Theorem (DDJSS)

The inv-Wilf equivalence classes for $\pi \in \mathfrak{S}_3$ are

$$\begin{array}{lll} [123]_{inv} & = & \{123\}, \\ [321]_{inv} & = & \{321\}, \\ [132]_{inv} & = & \{132,213\}, \\ [231]_{inv} & = & \{231,312\}. \end{array}$$

Proof. The two equivalences follow from the proposition:

$$213 = R_{180}(132)$$
 and $312 = R_{180}(231)$.

To see that there are no others, note that for $\pi \in \mathfrak{S}_k$

$$I_k(\pi;q) = \sum_{\sigma \in \mathfrak{S}_k - \{\pi\}} q^{\mathsf{inv}\,\sigma}$$

Theorem (DDJSS)

The inv-Wilf equivalence classes for $\pi \in \mathfrak{S}_3$ are

$$\begin{array}{lll} [123]_{inv} & = & \{123\}, \\ [321]_{inv} & = & \{321\}, \\ [132]_{inv} & = & \{132,213\}, \\ [231]_{inv} & = & \{231,312\}. \end{array}$$

Proof. The two equivalences follow from the proposition:

$$213 = R_{180}(132)$$
 and $312 = R_{180}(231)$.

To see that there are no others, note that for $\pi \in \mathfrak{S}_k$

$$I_k(\pi;q) = \sum_{\sigma \in \mathfrak{S}_k - \{\pi\}} q^{\mathsf{inv}\,\sigma} = [k]_q! - q^{\mathsf{inv}\,\pi}.$$

Theorem (DDJSS)

The inv-Wilf equivalence classes for $\pi \in \mathfrak{S}_3$ are

$$\begin{array}{lll} [123]_{inv} & = & \{123\}, \\ [321]_{inv} & = & \{321\}, \\ [132]_{inv} & = & \{132,213\}, \\ [231]_{inv} & = & \{231,312\}. \end{array}$$

Proof. The two equivalences follow from the proposition:

$$213 = R_{180}(132)$$
 and $312 = R_{180}(231)$.

To see that there are no others, note that for $\pi \in \mathfrak{S}_k$

$$I_k(\pi;q) = \sum_{\sigma \in \mathfrak{S}_k - \{\pi\}} q^{\mathsf{inv}\,\sigma} = [k]_q! - q^{\mathsf{inv}\,\pi}.$$

So if $\pi, \pi' \in \mathfrak{S}_k$ with $\pi \stackrel{\text{inv}}{=} \pi'$ then inv $\pi = \text{inv } \pi'$.

Theorem (DDJSS)

The inv-Wilf equivalence classes for $\pi \in \mathfrak{S}_3$ are

$$\begin{array}{lll} [123]_{inv} & = & \{123\}, \\ [321]_{inv} & = & \{321\}, \\ [132]_{inv} & = & \{132,213\}, \\ [231]_{inv} & = & \{231,312\}. \end{array}$$

Proof. The two equivalences follow from the proposition:

$$213 = R_{180}(132)$$
 and $312 = R_{180}(231)$.

To see that there are no others, note that for $\pi \in \mathfrak{S}_k$

$$I_k(\pi;q) = \sum_{\sigma \in \mathfrak{S}_k - \{\pi\}} q^{\mathsf{inv}\,\sigma} = [k]_q! - q^{\mathsf{inv}\,\pi}.$$

So if $\pi, \pi' \in \mathfrak{S}_k$ with $\pi \stackrel{\text{inv}}{\equiv} \pi'$ then inv $\pi = \text{inv } \pi'$. And inv 123, inv 321, inv 132, inv 231 are all different. \square

Outline

Pattern containment and avoidance

Permutation statistics: inversions

Permutation statistics: major index

q-Catalan numbers

Exercises and References

$$\operatorname{\mathsf{maj}} \pi = \sum_{a_i > a_{i+1}} i.$$

$$\mathsf{maj}\,\pi = \sum_{a_i > a_{i+1}} i.$$

Ex. If $\pi = 253614$ then maj $\pi = 2 + 4 = 6$.

$$\operatorname{\mathsf{maj}} \pi = \sum_{a_i > a_{i+1}} i.$$

Ex. If $\pi = 253614$ then maj $\pi = 2 + 4 = 6$.

Theorem (MacMahon, 1916)

$$\sum_{\sigma\in\mathfrak{S}_n}q^{\mathsf{maj}\,\sigma}=[n]_q!$$

$$\operatorname{maj} \pi = \sum_{a_i > a_{i+1}} i.$$

Ex. If $\pi = 253614$ then maj $\pi = 2 + 4 = 6$.

Theorem (MacMahon, 1916)

$$\sum_{\sigma\in\mathfrak{S}_n}q^{\mathsf{maj}\,\sigma}=[n]_q!$$

Given $\pi \in \mathfrak{S}$ we have a corresponding *major index polynomial*

$$M_n(\pi;q) = \sum_{\sigma \in \mathsf{Av}_n(\pi)} q^{\mathsf{maj}\,\sigma}.$$

$$\operatorname{maj} \pi = \sum_{a_i > a_{i+1}} i.$$

Ex. If $\pi = 253614$ then maj $\pi = 2 + 4 = 6$.

Theorem (MacMahon, 1916)

$$\sum_{\sigma\in\mathfrak{S}_n}q^{\mathsf{maj}\,\sigma}=[n]_q!$$

Given $\pi \in \mathfrak{S}$ we have a corresponding *major index polynomial*

$$M_n(\pi;q) = \sum_{\sigma \in \mathsf{Av}_n(\pi)} q^{\mathsf{maj}\,\sigma}.$$

Call π, π' maj-Wilf equivalent, $\pi \stackrel{\text{maj}}{=} \pi'$, if $M_n(\pi; q) = M_n(\pi'; q)$ for all n > 0.

$$\operatorname{maj} \pi = \sum_{a_i > a_{i+1}} i.$$

Ex. If $\pi = 253614$ then maj $\pi = 2 + 4 = 6$.

Theorem (MacMahon, 1916)

$$\sum_{\sigma\in\mathfrak{S}_n}q^{\mathsf{maj}\,\sigma}=[n]_q!$$

Given $\pi \in \mathfrak{S}$ we have a corresponding *major index polynomial*

$$M_n(\pi;q) = \sum_{\sigma \in \mathsf{Av}_n(\pi)} q^{\mathsf{maj}\,\sigma}.$$

Call π, π' maj-Wilf equivalent, $\pi \stackrel{\text{maj}}{=} \pi'$, if $M_n(\pi; q) = M_n(\pi'; q)$ for all $n \ge 0$. Let $[\pi]_{\text{maj}}$ denote the maj-Wilf equivalence class of π .

$$\operatorname{maj} \pi = \sum_{a_i > a_{i+1}} i.$$

Ex. If $\pi = 253614$ then maj $\pi = 2 + 4 = 6$.

Theorem (MacMahon, 1916)

$$\sum_{\sigma\in\mathfrak{S}_n}q^{\mathsf{maj}\,\sigma}=[n]_q!$$

Given $\pi \in \mathfrak{S}$ we have a corresponding *major index polynomial*

$$M_n(\pi;q) = \sum_{\sigma \in \mathsf{Av}_n(\pi)} q^{\mathsf{maj}\,\sigma}.$$

Call π, π' maj-Wilf equivalent, $\pi \stackrel{\text{maj}}{=} \pi'$, if $M_n(\pi; q) = M_n(\pi'; q)$ for all $n \ge 0$. Let $[\pi]_{\text{maj}}$ denote the maj-Wilf equivalence class of π .

Note: No $\rho \in D_4$ preserves the major index.

Theorem (DDJSS)

The maj-Wilf equivalence classes for $\pi \in \mathfrak{S}_3$ are

```
 \begin{array}{lll} [123]_{maj} & = & \{123\}, \\ [321]_{maj} & = & \{321\}, \\ [132]_{maj} & = & \{132,231\}, \\ [213]_{maj} & = & \{213,312\}. \end{array}
```

Theorem (DDJSS)

The maj-Wilf equivalence classes for $\pi \in \mathfrak{S}_3$ are

```
 \begin{aligned} & [123]_{maj} &=& \{123\}, \\ & [321]_{maj} &=& \{321\}, \\ & [132]_{maj} &=& \{132,231\}, \\ & [213]_{maj} &=& \{213,312\}. \end{aligned}
```

If $\pi = a_1 \dots a_n$ and $\sigma_1, \dots, \sigma_n \in \mathfrak{S}$ then the *inflation* of π by the σ_i is the permutation $\pi[\sigma_1, \dots, \sigma_n]$ whose diagram is obtained from that of π by replacing the *i*th dot with a copy of σ_i for all *i*.

Theorem (DDJSS)

The maj-Wilf equivalence classes for $\pi \in \mathfrak{S}_3$ are

```
 \begin{array}{lll} [123]_{maj} & = & \{123\}, \\ [321]_{maj} & = & \{321\}, \\ [132]_{maj} & = & \{132,231\}, \\ [213]_{maj} & = & \{213,312\}. \end{array}
```

If $\pi = a_1 \dots a_n$ and $\sigma_1, \dots, \sigma_n \in \mathfrak{S}$ then the *inflation* of π by the σ_i is the permutation $\pi[\sigma_1, \dots, \sigma_n]$ whose diagram is obtained from that of π by replacing the *i*th dot with a copy of σ_i for all *i*.

Theorem (DDJSS)

The maj-Wilf equivalence classes for $\pi \in \mathfrak{S}_3$ are

```
 \begin{array}{lll} [123]_{maj} & = & \{123\}, \\ [321]_{maj} & = & \{321\}, \\ [132]_{maj} & = & \{132,231\}, \\ [213]_{mai} & = & \{213,312\}. \end{array}
```

If $\pi = a_1 \dots a_n$ and $\sigma_1, \dots, \sigma_n \in \mathfrak{S}$ then the *inflation* of π by the σ_i is the permutation $\pi[\sigma_1, \dots, \sigma_n]$ whose diagram is obtained from that of π by replacing the *i*th dot with a copy of σ_i for all *i*.

Conjecture

For all
$$m, n \ge 0$$
 we have: $132[\iota_m, 1, \delta_n] \stackrel{\text{maj}}{=} 231[\iota_m, 1, \delta_n],$ where $\iota_m = 12 \dots m$ and $\delta_n = n(n-1) \dots 1$.

Outline

Pattern containment and avoidance

Permutation statistics: inversions

Permutation statistics: major index

q-Catalan numbers

Exercises and References

Since $\# \operatorname{Av}_n(\pi) = C_n$ for any $\pi \in \mathfrak{S}_3$, the corresponding $I_n(\pi;q)$ and $M_n(\pi;q)$ are q-analogues of the Catalan numbers since setting q=1 we recover C_n .

Since $\# \operatorname{Av}_n(\pi) = C_n$ for any $\pi \in \mathfrak{S}_3$, the corresponding $I_n(\pi;q)$ and $M_n(\pi;q)$ are q-analogues of the Catalan numbers since setting q=1 we recover C_n . The polynomials

$$C_n(q) = I_n(132; q) = I_n(213; q),$$

 $\tilde{C}_n(q) = I_n(231; q) = I_n(312; q)$

were introduced by Carlitz and Riordan and studied by numerous authors but the others seem to be new.

Since $\# \operatorname{Av}_n(\pi) = C_n$ for any $\pi \in \mathfrak{S}_3$, the corresponding $I_n(\pi;q)$ and $M_n(\pi;q)$ are q-analogues of the Catalan numbers since setting q=1 we recover C_n . The polynomials

$$C_n(q) = I_n(132; q) = I_n(213; q),$$

 $\tilde{C}_n(q) = I_n(231; q) = I_n(312; q)$

were introduced by Carlitz and Riordan and studied by numerous authors but the others seem to be new. For $n \ge 1$,

$$C_n = \sum_{k=0}^{n-1} C_k C_{n-k-1}.$$

Since $\# \operatorname{Av}_n(\pi) = C_n$ for any $\pi \in \mathfrak{S}_3$, the corresponding $I_n(\pi;q)$ and $M_n(\pi;q)$ are q-analogues of the Catalan numbers since setting q=1 we recover C_n . The polynomials

$$C_n(q) = I_n(132; q) = I_n(213; q),$$

 $\tilde{C}_n(q) = I_n(231; q) = I_n(312; q)$

were introduced by Carlitz and Riordan and studied by numerous authors but the others seem to be new. For $n \ge 1$,

$$C_n = \sum_{k=0}^{n-1} C_k C_{n-k-1}.$$

Theorem (DDJSS)

For $n \ge 1$ we have

$$I_n(312;q) = \sum_{k=0}^{n-1} q^k I_k(312;q) I_{n-k-1}(312;q).$$

Theorem

We have that C_n is odd if and only if $n = 2^k - 1$ for some $k \ge 0$.

Theorem

We have that C_n is odd if and only if $n = 2^k - 1$ for some $k \ge 0$. For any polynomial f(q) we let

 $\langle q^i \rangle f(q) =$ the coefficient of q^i in f(q).

Theorem

We have that C_n is odd if and only if $n = 2^k - 1$ for some $k \ge 0$. For any polynomial f(q) we let

$$\langle q^i \rangle f(q) =$$
the coefficient of q^i in $f(q)$.

Theorem (DDJSS)

For all k > 0 we have

$$\langle q^i \rangle I_{2^k-1}(321;q) = \left\{ egin{array}{ll} 1 & \mbox{if } i=0, \\ \mbox{an even number} & \mbox{if } i \geq 1. \end{array}
ight.$$

Outline

Pattern containment and avoidance

Permutation statistics: inversions

Permutation statistics: major index

q-Catalan numbers

Exercises and References

1. (a) Use symmetries of the square to prove 123 \equiv 321 and 132 \equiv 213 \equiv 231 \equiv 312.

- 1. (a) Use symmetries of the square to prove 123 \equiv 321 and 132 \equiv 213 \equiv 231 \equiv 312.
 - (b) Use induction to show that $\# Av_n(132) = C_n$.

- 1. (a) Use symmetries of the square to prove $123 \equiv 321$ and $132 \equiv 213 \equiv 231 \equiv 312$.
 - (b) Use induction to show that $\# Av_n(132) = C_n$.
- 2. For $0 \le k \le n$ define the *q-binomial coefficients* to be

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}.$$

(a) Prove that $\begin{bmatrix} n \\ k \end{bmatrix}_1 = {n \choose k}$.

- 1. (a) Use symmetries of the square to prove $123 \equiv 321$ and $132 \equiv 213 \equiv 231 \equiv 312$.
 - (b) Use induction to show that $\# Av_n(132) = C_n$.
- 2. For $0 \le k \le n$ define the *q-binomial coefficients* to be

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}.$$

- (a) Prove that $\begin{bmatrix} n \\ k \end{bmatrix}_1 = {n \choose k}$.
- (b) Prove that $\begin{bmatrix} n \\ 0 \end{bmatrix}_q = \begin{bmatrix} n \\ n \end{bmatrix}_q = 1$.

- 1. (a) Use symmetries of the square to prove 123 \equiv 321 and 132 \equiv 213 \equiv 231 \equiv 312.
 - (b) Use induction to show that $\# Av_n(132) = C_n$.
- 2. For $0 \le k \le n$ define the *q-binomial coefficients* to be

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}.$$

- (a) Prove that $\begin{bmatrix} n \\ k \end{bmatrix}_1 = {n \choose k}$.
- (b) Prove that $\begin{bmatrix} n \\ 0 \end{bmatrix}_a = \begin{bmatrix} n \\ n \end{bmatrix}_a = 1$.
- (c) Prove that for 0 < k < n we have

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_q + q^k \begin{bmatrix} n-1 \\ k \end{bmatrix}_q = q^{n-k} \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_q + \begin{bmatrix} n-1 \\ k \end{bmatrix}_q.$$

- 1. (a) Use symmetries of the square to prove 123 \equiv 321 and 132 \equiv 213 \equiv 231 \equiv 312.
 - (b) Use induction to show that $\# Av_n(132) = C_n$.
- 2. For $0 \le k \le n$ define the *q-binomial coefficients* to be

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}.$$

- (a) Prove that $\begin{bmatrix} n \\ k \end{bmatrix}_1 = {n \choose k}$.
- (b) Prove that $\begin{bmatrix} n \\ 0 \end{bmatrix}_a = \begin{bmatrix} n \\ n \end{bmatrix}_a = 1$.
- (c) Prove that for 0 < k < n we have

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_q + q^k \begin{bmatrix} n-1 \\ k \end{bmatrix}_q = q^{n-k} \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_q + \begin{bmatrix} n-1 \\ k \end{bmatrix}_q.$$

(d) Show $\binom{n}{k}_q$ is a polynomial in q with coefficients in $\mathbb{Z}_{\geq 0}$.

- 1. (a) Use symmetries of the square to prove 123 \equiv 321 and 132 \equiv 213 \equiv 231 \equiv 312.
 - (b) Use induction to show that $\# Av_n(132) = C_n$.
- 2. For $0 \le k \le n$ define the *q-binomial coefficients* to be

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q} = \frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}.$$

- (a) Prove that $\begin{bmatrix} n \\ k \end{bmatrix}_1 = {n \choose k}$.
- (b) Prove that $\begin{bmatrix} n \\ 0 \end{bmatrix}_a = \begin{bmatrix} n \\ n \end{bmatrix}_a = 1$.
- (c) Prove that for 0 < k < n we have

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_q + q^k \begin{bmatrix} n-1 \\ k \end{bmatrix}_q = q^{n-k} \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_q + \begin{bmatrix} n-1 \\ k \end{bmatrix}_q.$$

- (d) Show $\binom{n}{k}_q$ is a polynomial in q with coefficients in $\mathbb{Z}_{\geq 0}$.
- (e) Let P(n, k) denote the set of w permutations of k zeros and n k ones. Defining inv similarly to \mathfrak{S}_n , prove

$$\sum_{w \in P(n,k)} q^{\mathsf{inv}\,w} = \begin{bmatrix} n \\ k \end{bmatrix}_q.$$

References.

- Leonard Carlitz and James Riordan, Two element lattice permutation numbers and their q-generalization, Duke Math. J., 31 (1964) 371–388.
- 2. Szu-En Cheng, Sergi Elizalde, Anisse Kasraoui, and Bruce E. Sagan, Inversion polynomials for 321-avoiding permutations, *Duke Math. J.*, submitted.
- 3. Emeric Deutsch and Bruce E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, *J. Number Theory*, **117** (2006), 191–215.
- 4. Theodore Dokos, B. Tim Dwyer, Brian P. Johnson, Bruce E. Sagan, and Kim Selsor, Permutation Patterns and Statistics, *Discrete Math.*, **312** (2012), 2760–2775.
- 5. Percy A. MacMahon, Combinatory Analysis, volumes 1 and 2, reprint of the 1916 original, *Dover*, New York (2004).
- Alexander Postnikov and Bruce E. Sagan, What power of two divides a weighted Catalan number?, J. Combin. Theory, Ser. A, 114 (2007), 970–977.

- Oscar Rodrigues, Note sur les inversions, ou dérangements produits dans les permutations, *J. Math.*, 4 (1839), 236–240.
- 8. Bruce E. Sagan, and Carla D. Savage, Mahonian Pairs, *J. Combin. Theory, Ser. A*, **119** (2012), 526–545.
- 9. Rodica Simion and Frank W. Schmidt, Restricted permutations, *European J. Combin.*, **6** (1985), 383–406.
- Richard P. Stanley, Enumerative combinatorics, volume 1, second edition. Cambridge Studies in Advanced Mathematics, 49, *Cambridge University Press*, Cambridge (2012).

THANKS FOR LISTENING!