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Two sequences of distinct integers π = a1a2 . . . ak and
σ = b1b2 . . . bk are order isomorphic if, for all i and j ,

ai < aj ⇐⇒ bi < bj .

Ex. The sequences π = 132 and σ = 485 are order isomorphic.
Let Sn be the symmetric group of all permutations of {1, . . . ,n}.

#Sn = n!

Let S = ∪n≥0Sn. If π, σ ∈ S then σ contains π as a pattern if
there is a subsequence σ′ of σ order isomorphic to π.
Ex. σ = 42183756 contains π = 132 because of σ′ = 485.
We say σ avoids π if σ does not contain π and let

Avn(π) = {σ ∈ Sn : σ avoids π}.

Ex. If π ∈ Sk then Avk (π) = Sk − {π}.
Say that π and π′ are Wilf equivalent, π ≡ π′, if for all n ≥ 0

#Avn(π) = #Avn(π
′).

Theorem (Knuth, 1973)
For any π ∈ S3 and n ≥ 0: #Avn(π) = Cn (Catalan number).
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Theorem (Knuth, 1973)
For any π ∈ S3 and all n ≥ 0 we have #Avn(π) = Cn.

The nth Catalan number is

Cn =
1

n + 1

(
2n
n

)
.

So C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42, . . .

Ex. Av3(123) = {132, 213, 231, 312, 321} = S3 − {123} so
#Av3(123) = 5 = C3. Similarly #Av3(π) = 5 = C3, for any
π ∈ S3 so we have shown Knuth’s Theorem holds for n = 3.

Theorem
For n ≥ 1: Cn = C0Cn−1 + C1Cn−2 + C2Cn−3 + · · ·+ Cn−1C0.

Ex. C3 = C0C2 + C1C1 + C2C0 = 1 · 2 + 1 · 1 + 2 · 1 = 5.
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The diagram of π = a1 . . . an is (1,a1), . . . , (n,an) ∈ Z2.

Ex.

132 =

R90(132) = = 231

The dihedral group D4 of symmetries of the square acts on Sn:

D4 = {R0,R90,R180,R270, r0, r1, r−1, r∞}
where Rθ is rotation counter-clockwise through θ degrees and
rm is reflection in a line of slope m.

Note that for any ρ ∈ D4:

σ contains π ⇐⇒ ρ(σ) contains ρ(π),

∴ σ avoids π ⇐⇒ ρ(σ) avoids ρ(π).

∴ #Avn(π) = #Avn(ρ(π)).

Proposition
For any ρ ∈ D4 and any permutation π we have

ρ(π) ≡ π.
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A permutation statistic is st : S→ {0,1,2, . . .}.

The inversion
number of π = a1 . . . an is

invπ = #{(i , j) : i < j and ai > aj}.

Ex. If π = 24135 then invπ = #{(1,3), (2,3), (2,4)} = 3.
Consider the generating function

In(q) =
∑
σ∈Sn

qinvπ.

Ex. When n = 3,

π : 123 132 213 231 312 321
invπ : 0 1 1 2 2 3
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Given π ∈ S we have a corresponding inversion polynomial

In(π;q) =
∑

σ∈Avn(π)

qinvσ.

Call π and π′ inv-Wilf equivalent, π
inv≡ π′, if In(π;q) = In(π′;q)

for all n ≥ 0. This implies π ≡ π′

since

#Avn(π) = In(π;1) = In(π′;1) = #Avn(π
′).

Note that (i , j) is an inversion of π iff the line connecting the
corresponding points in the diagram of π has negative slope.

Proposition (DDJSS)
Let π ∈ S and ρ ∈ D4. Then

inv ρ(π) = invπ ⇐⇒ ρ ∈ {R0,R180, r1, r−1}.

So for ρ ∈ {R0,R180, r1, r−1} we have

ρ(π)
inv≡ π.
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Let [π]inv denote the inv-Wilf equivalence class of π.

Theorem (DDJSS)
The inv-Wilf equivalence classes for π ∈ S3 are

[123]inv = {123},
[321]inv = {321},
[132]inv = {132,213},
[231]inv = {231,312}.

Proof. The two equivalences follow from the proposition:

213 = R180(132) and 312 = R180(231).

To see that there are no others, note that for π ∈ Sk

Ik (π;q) =
∑

σ∈Sk−{π}

qinvσ = [k ]q!− qinvπ.

So if π, π′ ∈ Sk with π
inv≡ π′ then invπ = invπ′. And inv 123,

inv 321, inv 132, inv 231 are all different. �
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The major index of π = a1 . . . an is

majπ =
∑

ai>ai+1

i .

Ex. If π = 253614 then majπ = 2 + 4 = 6.

Theorem (MacMahon, 1916)∑
σ∈Sn

qmajσ = [n]q!

Given π ∈ S we have a corresponding major index polynomial

Mn(π;q) =
∑

σ∈Avn(π)

qmajσ.

Call π, π′ maj-Wilf equivalent, π
maj
≡ π′, if Mn(π;q) = Mn(π

′;q) for
all n ≥ 0. Let [π]maj denote the maj-Wilf equivalence class of π.

Note: No ρ ∈ D4 preserves the major index.
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all n ≥ 0. Let [π]maj denote the maj-Wilf equivalence class of π.

Note: No ρ ∈ D4 preserves the major index.
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Theorem (DDJSS)
The maj-Wilf equivalence classes for π ∈ S3 are

[123]maj = {123},
[321]maj = {321},
[132]maj = {132,231},
[213]maj = {213,312}.

If π = a1 . . . an and σ1, . . . , σn ∈ S then the inflation of π by the
σi is the permutation π[σ1, . . . , σn] whose diagram is obtained
from that of π by replacing the i th dot with a copy of σi for all i .
Ex.

132 = 132[σ1, σ2, σ3] =

σ1

σ2

σ3

Conjecture
For all m,n ≥ 0 we have: 132[ιm,1, δn]

maj
≡ 231[ιm,1, δn],

where ιm = 12 . . .m and δn = n(n − 1) . . . 1.
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Since #Avn(π) = Cn for any π ∈ S3, the corresponding In(π;q)
and Mn(π;q) are q-analogues of the Catalan numbers since
setting q = 1 we recover Cn.

The polynomials

Cn(q) = In(132;q) = In(213;q),
C̃n(q) = In(231;q) = In(312;q)

were introduced by Carlitz and Riordan and studied by
numerous authors but the others seem to be new. For n ≥ 1,

Cn =
n−1∑
k=0

CkCn−k−1.

Theorem (DDJSS)
For n ≥ 1 we have

In(312;q) =
n−1∑
k=0

qk Ik (312;q)In−k−1(312;q).
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Divisibility properties of Catalan numbers has been a topic of
recent interest: Deutsch & Sagan; Eu, Liu, & Yeh; Kauers,
Krattenthaler & Müller; Konvalinka; Lin; Liu & Yeh; Postnikov &
Sagan; Xin & Xu; Yildiz.

Theorem
We have that Cn is odd if and only if n = 2k − 1 for some k ≥ 0.
For any polynomial f (q) we let

〈qi〉f (q) = the coefficient of qi in f (q).

Theorem (DDJSS)
For all k ≥ 0 we have

〈qi〉I2k−1(321;q) =
{

1 if i = 0,
an even number if i ≥ 1.
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1. (a) Use symmetries of the square to prove 123 ≡ 321 and
132 ≡ 213 ≡ 231 ≡ 312.

(b) Use induction to show that #Avn(132) = Cn.

2. For 0 ≤ k ≤ n define the q-binomial coefficients to be[
n
k

]
q
=

[n]q!
[k ]q![n − k ]q!

.

(a) Prove that
[n

k

]
1 =

(n
k

)
.

(b) Prove that
[n

0

]
q =

[n
n

]
q = 1.

(c) Prove that for 0 < k < n we have[
n
k

]
q
=

[
n − 1
k − 1

]
q
+ qk

[
n − 1

k

]
q
= qn−k

[
n − 1
k − 1

]
q
+

[
n − 1

k

]
q
.

(d) Show
[n

k

]
q is a polynomial in q with coefficients in Z≥0.

(e) Let P(n, k) denote the set of w permutations of k zeros
and n − k ones. Defining inv similarly to Sn, prove∑

w∈P(n,k)

qinv w =

[
n
k

]
q
.
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