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The diagramof = ay ... anis (1,a1),...,(n, a,) € Z2.
Ex. ° °

132 = *  Ry(132) = e — 231

The dihedral group D, of symmetries of the square acts on &,:
Dy = {Ro, Rao, R1go, A270, M0, 11, r-1, o }

where Ry is rotation counter-clockwise through 6 degrees and
Irm is reflection in a line of slope m. Note that for any p € Dy:

ocontains m <= p(o) contains p(r),
oavoids m <= p(o) avoids p(r).

# Avp(T) = # Avn(p(r)).
Proposition
For any p € D4 and any permutation = we have

p(m) = .



Outline

Permutation statistics: inversions



A permutation statisticis st: 6 — {0,1,2,...}.



A permutation statisticis st : & — {0,1,2,...}. The inversion
numberof = ay...anis

invr = #{(/,j) :i<jand a; > a;}.



A permutation statisticis st : & — {0,1,2,...}. The inversion
numberof = ay...anis

invr = #{(/,j) :i<jand a; > a;}.

Ex. If 7 = 24135 then invr = #{(1,3), (2,3), (2,4)} = 3.



A permutation statisticis st : & — {0,1,2,...}. The inversion
numberof = ay...anis

invr = #{(/,j) :i<jand a; > a;}.

Ex. If m = 24135 theninvr = #{(1,3), (2,3), (2,4)} = 3.
Consider the generating function

/n(q) = Z qinvﬂ'

O'GGn



A permutation statisticis st : & — {0,1,2,...}. The inversion
numberof = ay...anis

invr = #{(/,j) :i<jand a; > a;}.

Ex. If 7 = 24135 then invm = #{(1,3), (2,3), (2,4)} = 3.
Consider the generating function

/n(q) = Z qinvﬂ'

O'GGn
Ex. When n= 3,



A permutation statisticis st : & — {0,1,2,...}. The inversion
numberof = ay...anis

invr = #{(/,j) :i<jand a; > a;}.

Ex. If 7 = 24135 then invm = #{(1,3), (2,3), (2,4)} = 3.
Consider the generating function

/n(q) = Z qinwr'

0'66[1
Ex. When n= 3,

T ;123 132 213 231 312 321



A permutation statisticis st : & — {0,1,2,...}. The inversion
numberof = ay...anis

invr = #{(/,j) :i<jand a; > a;}.

Ex. If 7 = 24135 then invm = #{(1,3), (2,3), (2,4)} = 3.
Consider the generating function

/n(q) = Z qinwr'
0'66[1
Ex. When n= 3,

™ ;123 132 213 231 312 321
invem : 0 1 1 2 2 3



A permutation statisticis st : & — {0,1,2,...}. The inversion
numberof = ay...anis

invr = #{(/,j) :i<jand a; > a;}.

Ex. If 7 = 24135 then invm = #{(1,3), (2,3), (2,4)} = 3.
Consider the generating function

/n(q) = Z qinwr'

0'66[1
Ex. When n= 3,
T ;123 132 213 231 312 321
inver 0 1 1 2 2 3

h(q) = ¢ + g + g + ¢ + ¢ + ¢



A permutation statisticis st : & — {0,1,2,...}. The inversion
numberof = ay...anis

invr = #{(/,j) :i<jand a; > a;}.

Ex. If 7 = 24135 then invm = #{(1,3), (2,3), (2,4)} = 3.
Consider the generating function

/n(q) = Z qinwr'

0'66[1
Ex. When n= 3,
T - 123 132 213 231 312 321
invr : 0 1 1 2 2 3
h(q) = ¢ + g + g + ¢ + ¢ + ¢

So li(q) =1+2g9+2¢*+¢°



A permutation statisticis st : & — {0,1,2,...}. The inversion
numberof m = ay...apis

invr = #{(/,j) :i<jand a; > a;}.

Ex. If 7 = 24135 then invm = #{(1,3), (2,3), (2,4)} = 3.
Consider the generating function

/n(q) _ Z qinV7r'

ceSp
Ex. When n= 3,
T - 123 132 213 231 312 321
invr : 0 1 1 2 2 3
h(q) = ¢ + g + g + ¢ + ¢ + ¢

Sok(q) =1+29+2¢°+q° = (1)1 +q)(1 + g+ ¢).



A permutation statisticis st : & — {0,1,2,...}. The inversion
numberof m = ay...apis

invr = #{(/,j) :i<jand a; > a;}.

Ex. If 7 = 24135 then invm = #{(1,3), (2,3), (2,4)} = 3.
Consider the generating function

/n(q) _ Z qinV7r'

ceSp
Ex. When n= 3,
T - 123 132 213 231 312 321
invr : 0 1 1 2 2 3
h(q) = ¢ + g + g + ¢ + ¢ + ¢

Sok(q) =1+29+2¢°+q° = (1)1 +q)(1 + g+ ¢).
Theorem (Rodrigues, 1839)
Ih(@)=11+9(1+q+¢*)---(1+qg+--+g"")



A permutation statisticis st : & — {0,1,2,...}. The inversion
numberof m = ay...apis

invr = #{(/,j) :i<jand a; > a;}.
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A permutation statisticis st : & — {0,1,2,...}. The inversion
numberof = ay...anis

invr = #{(/,j) :i<jand a; > a;}.

Ex. If 7 = 24135 then invm = #{(1,3), (2,3), (2,4)} = 3.
Consider the generating function

/n(q) _ Z qinV7r'

0'66[1
Ex. When n= 3,
T - 123 132 213 231 312 321
invr : 0 1 1 2 2 3
h(q) = ¢ + g + g + ¢ + ¢ + ¢

Sok(q) =1+29+2¢°+q° = (1)1 +q)(1 + g+ ¢).
Theorem (Rodrigues, 1839)

hW@=11+q1+q+¢*) - (1+g+ - +¢"")
We call [n]4! a g-analogue of n! since [n];! = nl.

o [n]g!
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Given m € G we have a corresponding inversion polynomial

/n 7T q Z qmva

o€Avp()
Call = and 7’ inv-Wilf equivalent, 7 = «, if In(7; q) = In(x’; q)
forall n > 0. This implies 7 = ' since

#AV,(7) = In(m; 1) = In(7'; 1) = #Ava(7).

Note that (i, ) is an inversion of = iff the line connecting the
corresponding points in the diagram of = has negative slope.

Proposition (DDJSS)
Letm e & and p € Dy. Then

ian(ﬂ') =invr <— pE {Ro, Ris0, I’1./IL1}.
So for p € {Ro, Riso, 1, r—1} we have

inv
= T.

p(m)
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821),,, = {321},
[132],, = {132,213},
[231],, = {231,312},
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Let [r]iny denote the inv-Wilf equivalence class of .

Theorem (DDJSS)
The inv-Wilf equivalence classes for m € &3 are

[123];,, = {123},
[321];,, = {321},
[132],., = {132,213},
[231],, = {231,312},

Proof. The two equivalences follow from the proposition:
213 = R180(132) and 312 = R180(231).

To see that there are no others, note that for 7 € &

(ma)= > g™ =[Kg! - g™
o€ —{n}

Soif m, 7’ € & with Y then invr — inv'. And inv123,
inv321, inv132, inv231 are all different. O
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The majorindexof m = ay...anis

majr= > .

a;>aj 1

Ex. If = = 253614 then majr =2 +4 = 6.
Theorem (MacMahon, 1916)

D g™ = [n]g!

ceGp
Given m € & we have a corresponding major index polynomial

Mn(7; q) = Z qmale.

o€Avp(r)

Call 7, 7/ maj-Wilf equivalent, = s 7!, if Mp(7; @) = Mp(7'; q) for
all n > 0. Let [r]mg denote the maj-Wilf equivalence class of 7.

Note: No p € D4 preserves the major index.
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Theorem (DDJSS)
The maj-Wilf equivalence classes form € &3 are

[123] 4 = {123},

[321] 4 = {321},

[132],, = {132,231},

[213], = {213,312}
fr=ay...apand o4,...,0n € & then the inflation of = by the
o; is the permutation 7|04, ..., os] Whose diagram is obtained

from that of = by replacing the ith dot with a copy of o; for all i.
Ex. °

02
132 = L4 132[0’1,02,0’3] = 03
of!
Conjecture _
For all m,n > 0 we have: 132[tm, 1,00] = 231[im, 1,65,

where ., =12...mandé,=n(n—1)...1.
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Since # Av,(m) = C, for any 7 € &3, the corresponding Ix(7; Q)
and M,(m; q) are g-analogues of the Catalan numbers since
setting g = 1 we recover C,. The polynomials

Cn(q) = In(132; q) = In(213; q),
én(q) = In(231;9) = In(312;q)

were introduced by Carlitz and Riordan and studied by
numerous authors but the others seem to be new. For n > 1,

n—1
Cn = Z CkCnk—1.
k=0

Theorem (DDJSS)
For n > 1 we have

n—1

Ih(312;9) = > q“Ik(312;q)ln_k-1(312; Q).
k=0
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Divisibility properties of Catalan numbers has been a topic of
recent interest: Deutsch & Sagan; Eu, Liu, & Yeh; Kauers,
Krattenthaler & Miller; Konvalinka; Lin; Liu & Yeh; Postnikov &
Sagan; Xin & Xu; Yildiz.

Theorem
We have that C, is odd if and only if n = 2k — 1 for some k > 0.

For any polynomial f(q) we let

(q')f(q) = the coefficient of ¢’ in f(q).

Theorem (DDJSS)
For all k > 0 we have

1 ifi =0,

i Doy
(q')lox1(321: ) = { an even number ifi > 1.
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1. (a) Use symmetries of the square to prove 123 = 321 and
132 =213 = 231 = 312.
(b) Use induction to show that # Av,(132) = C,.

2. For 0 < k < n define the g-binomial coefficients to be

[n] __[nlgt
klq [Klg![n — Klg!
(a) Prove that [], = ().

(b) Prove that [g}q = mq =1.
(c)

c) Prove that for 0 < kK < n we have

AT o G IR ot I G

(d) Show [ } is a polynomial in g with coefficients in Zx.
(

e) Let P(n, k) denote the set of w permutations of k zeros
and n — k ones. Defining inv similarly to &, prove

s -,

weP(n,k) q

X >



References.

1. Leonard Carlitz and James Riordan, Two element lattice
permutation numbers and their g-generalization, Duke
Math. J., 31 (1964) 371-388.

2. Szu-En Cheng, Sergi Elizalde, Anisse Kasraoui, and Bruce
E. Sagan, Inversion polynomials for 321-avoiding
permutations, Duke Math. J., submitted.

3. Emeric Deutsch and Bruce E. Sagan, Congruences for
Catalan and Motzkin numbers and related sequences, J.
Number Theory, 117 (2006), 191-215.

4. Theodore Dokos, B. Tim Dwyer, Brian P. Johnson, Bruce
E. Sagan, and Kim Selsor, Permutation Patterns and
Statistics, Discrete Math., 312 (2012), 2760-2775.

5. Percy A. MacMahon, Combinatory Analysis, volumes 1
and 2, reprint of the 1916 original, Dover, New York (2004).

6. Alexander Postnikov and Bruce E. Sagan, What power of
two divides a weighted Catalan number?, J. Combin.
Theory, Ser. A, 114 (2007), 970-977.



10.

Oscar Rodrigues, Note sur les inversions, ou
dérangements produits dans les permutations, J. Math., 4
(1839), 236—240.

Bruce E. Sagan, and Carla D. Savage, Mahonian Pairs, J.
Combin. Theory, Ser. A, 119 (2012), 526—-545.

Rodica Simion and Frank W. Schmidt, Restricted
permutations, European J. Combin., 6 (1985), 383—406.

Richard P. Stanley, Enumerative combinatorics, volume 1,
second edition. Cambridge Studies in Advanced
Mathematics, 49, Cambridge University Press, Cambridge
(2012).



THANKS FOR
LISTENING!



	Pattern containment and avoidance 
	Permutation statistics: inversions
	Permutation statistics: major index
	q-Catalan numbers
	Exercises and References

