Pattern-Avoiding Polytopes and Bruhat Orders II arXiv:1609.01782

Robert Davis joint with Bruce Sagan

Michigan State University

7 January 2016

Last time...

- $B_n(132, 312)$ is the polytope whose vertices are permutations matrices corresponding to elements of $Av_n(132, 312)$
- $Q_n(132, 312)$ is the poset on $Av_n(132, 312)$ with the right weak Bruhat order
 - This is isomorphic to the distributive lattice M(n-1) of shifted Young tableaux contained inside $(n-1, n-2, \ldots, 1)$
- The simplicial complex $\mathcal{T}_n(132, 312)$, induced from $\Delta(Q_n(132, 312))$, is shellable and consists of unimodular simplices with vertices from $B_n(132, 312)$

This time...

- Show that $\mathcal{T}_n(132, 312)$ is geometrically a triangulation of $B_n(132, 312)$
- ② Create an EL-labeling of $Q_n(132, 312)$ to help describe the $h^*(B_n(132, 312))$
- Use the theory of (Q, ω)-partitions to show that the h*-vector is symmetric
- Draw additional conclusions about the h*-vector and the normalized volume of the polytope

Gorenstein polytopes

Theorem (D. and Sagan)

 $\mathcal{T}_n(132, 312)$ is a unimodular, shellable, regular, reverse lexicographic triangulation of $B_n(132, 312)$.

Theorem (Stanley, 1978)

If P is a lattice polytope, then $h^*(P)$ is symmetric if and only if P is Gorenstein.

Sometimes it's easy to check if P is Gorenstein – but not this time. So we'll obtain symmetry in another way.

Definition

Let Δ be a *d*-dimensional abstract simplicial complex, and let f_i denote the number of *i*-dimensional faces of Δ . The *h*-vector of Δ is the sequence $h(\Delta) = (h_0, \ldots, h_d)$ defined by

$$\sum_{i=0}^{d} h_i t^{d-i} = \sum_{i=0}^{d} f_{i-1} (t-1)^{d-i}.$$

Note: if \mathcal{T} is a triangulation of a polytope, then \mathcal{T} also has a simplicial complex structure, so writing $h(\mathcal{T})$ makes sense.

Theorem (Stanley, 1978)

If \mathcal{T} is a geometric, unimodular, reverse lexicographic triangulation of P, then $h^*(P) = h(\mathcal{T})$.

Finding shelling numbers

Definition

Suppose T_1, \ldots, T_k is a shelling order of the maximal simplices in a triangulation of a polytope. The shelling number of T_j is

 $r(T_j) = \#\{v \in T_j \mid (T_j \setminus v) \subseteq (T_1 \cup \cdots \cup T_{j-1})\}.$

In other words, $r(T_j)$ is the number of facets of T_j that glue into $T_1 \cup \cdots \cup T_{j-1}$.

Theorem (Stanley, 1978)

Suppose T_1, \ldots, T_k is a shelling order of a simplicial complex Δ . Then the component h_i of $h(\Delta)$ is the number of T_j such that $r(T_j) = i$.

Finding shelling numbers

Lemma (Björner, 1980)

If c is a maximal chain in a poset Q admitting an EL-labeling $\lambda,$ then

 $r(\Delta(c)) = \operatorname{des} \lambda(c)$

where des is number of descents.

Goal is now to find a specific EL-labeling of $Q_n(132, 312)$.

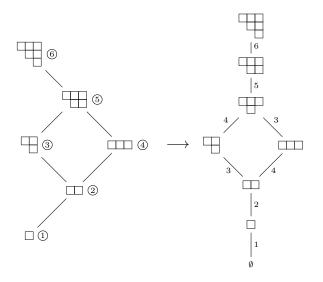
Theorem (Stanley, 1972)

Suppose Q is a distributive lattice, Irr(Q) is its poset of join-irreducibles, and #(Irr(Q)) = k. If $f : Irr(Q) \to [k]$ is an order-preserving map, then f induces an EL-labeling of Q.

General idea: a covering $I \lessdot J$ of order ideals in Irr(Q) is labeled with $J \setminus I$.

Open Questions

Example: EL-labeling of M(3)



Let Q be a poset on n elements and $\omega: Q \to [n]$ a bijection. A dual (Q, ω) -partition is a function $f: Q \to [m]$ such that

- f is order-preserving, and
- ${\it 2 \hspace{-.1in} 0} \hspace{0.1in} \text{if} \hspace{0.1in} s < t \hspace{0.1in} \text{and} \hspace{0.1in} \omega(s) > \omega(t), \hspace{0.1in} \text{then} \hspace{0.1in} f(x) < f(t).$

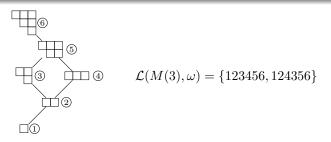
The order polynomial $\Omega_{Q,\omega}(m)$ is the number of functions f satisfying the above conditions.

Definition

Given a poset Q with n elements and a labeling ω , its Jordan-Hölder set, $\mathcal{L}(Q, \omega)$, is the set of permutations

$$w = \omega(q_1)\omega(q_2)\ldots\omega(q_n)$$

where q_1, \ldots, q_n runs over all linear extensions of Q.



Theorem (Stanley (EC1))

Let Q be a poset and ω a natural labeling of Q (i.e. an order-preserving bijection).

• We may write

$$\sum_{m\geq 0} \Omega_{Q,\omega}(m) t^m = \frac{\sum_{w\in\mathcal{L}(Q,\omega)} t^{1+\deg w}}{(1-t)^{\#Q+1}}$$

2 The coefficients in the numerator above are symmetric if and only if Q is graded.

Theorem (D. and Sagan)

For all $n, h^*(B_n(132, 312))$ is symmetric.

Proof.

Earlier said that h_i^* counts the number of sequences of edge labels in maximal chains of $Q_n(132, 312)$ with *i* descents. These sequences are exactly the linear extensions of $Irr(Q_n(132, 312))$, so

$$\sum_{i=0}^{d} h_i^* t^i = \frac{1}{t} \left(\sum_{w \in \mathcal{L}(Q,\omega)} t^{1+\operatorname{des} w} \right)$$

Since $Irr(Q_n(132, 312))$ is graded, the coefficients on each side are symmetric.

Corollary (D. and Sagan)

For all $n, B_n(132, 312)$ is Gorenstein.

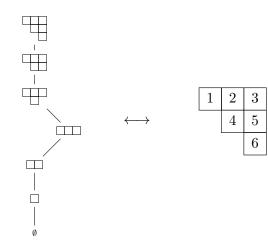
Theorem (Bruns and Römer, 2007)

Every Gorenstein lattice polytope with a regular unimodular triangulation has a unimodal h^* -vector.

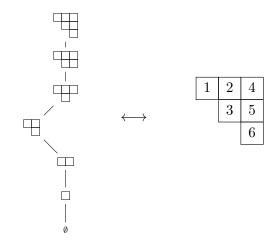
Corollary (D. and Sagan)

```
For all n, h^*(B_n(132, 312)) is unimodal.
```

Maximal chains in $Q_n(132, 312)$ are in bijection with shifted standard Young tableaux:



Maximal chains in $Q_n(132, 312)$ are in bijection with shifted standard Young tableaux:



Fact: the normalized volume of a lattice polytope is $\sum h_i^*$. So, by the hook length formula for shifted standard Young tableaux...

Corollary (D. and Sagan)

The normalized volume of $B_n(132, 312)$ is

$$\operatorname{Vol} B_n(132, 312) = \binom{n}{2}! \frac{\prod_{i=1}^{n-1} (i-1)!}{\prod_{i=1}^{n-1} (2i-1)!}$$

Some Wide-Open Questions

• For "nice" special classes of Π ,

- what is the combinatorial structure of $B_n(\Pi)$?
- **2** what is $\operatorname{Vol}(B_n(\Pi))$?
- **3** what is the h^* -vector of $B_n(\Pi)$?
- What happens if we consider vincular or bivincular patterns? Other kinds of patterns?
- **③** For which choices of Π is $B_n(\Pi)$ Gorenstein?
- What are the homotopy types of Q_n(Π)? (in general their order complexes aren't necessarily spheres, or even Cohen-Macaulay)