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Introduction

Last time. ..

e B,(132,312) is the polytope whose vertices are
permutations matrices corresponding to elements of
Av,,(132,312)

° (0,(132,312) is the poset on Av,(132,312) with the right
weak Bruhat order

o This is isomorphic to the distributive lattice M (n — 1) of
shifted Young tableaux contained inside (n —1,n —2,...,1)

@ The simplicial complex T,(132,312), induced from
A(Qn(132,312)), is shellable and consists of unimodular
simplices with vertices from B,,(132,312)



Introduction

This time. ..

@ Show that 7,(132,312) is geometrically a triangulation of
B,(132,312)

@ Create an EL-labeling of @,,(132,312) to help describe the
h*(Bn(132,312))

@ Use the theory of (Q,w)-partitions to show that the
h*-vector is symmetric

@ Draw additional conclusions about the h*-vector and the
normalized volume of the polytope



Symmetry and Shellability

Gorenstein polytopes

Theorem (D. and Sagan)

T.(132,312) is a unimodular, shellable, regular, reverse
lexicographic triangulation of B, (132, 312).

Theorem (Stanley, 1978)

If P is a lattice polytope, then h*(P) is symmetric if and only if
P is Gorenstein.

v

Sometimes it’s easy to check if P is Gorenstein — but not this
time. So we’ll obtain symmetry in another way.



Symmetry and Shellability

Definition

Let A be a d-dimensional abstract simplicial complex, and let f;
denote the number of i-dimensional faces of A. The h-vector of
A is the sequence h(A) = (hog, ..., hq) defined by

d d
Z hitdii = Z fi_l(t = 1)d7i.
=0 =0

Note: if T is a triangulation of a polytope, then T also has a
simplicial complex structure, so writing h(7 ) makes sense.

Theorem (Stanley, 1978)

If T is a geometric, unimodular, reverse lexicographic
triangulation of P, then h*(P) = h(T).




Symmetry and Shellability

Finding shelling numbers

Definition
Suppose 11, ..., T} is a shelling order of the maximal simplices
in a triangulation of a polytope. The shelling number of T is

r(Ty) = #{v € Tj | (Tj \v) € (T1U---UTj1)}

In other words, r(7}) is the number of facets of Tj that glue
into Th U---UTj_q.

Theorem (Stanley, 1978)

Suppose 11, ..., T} is a shelling order of a simplicial complex A.
Then the component h; of h(A) is the number of T} such that
r(T};) = 1.




Symmetry and Shellability

Finding shelling numbers

Lemma (Bjorner, 1980)

If ¢ is a maximal chain in a poset () admitting an EL-labeling
A, then

r(A(c)) = des A(c)

where des is number of descents.

Goal is now to find a specific EL-labeling of @, (132,312).

Theorem (Stanley, 1972)

Suppose @ is a distributive lattice, Irr(Q) is its poset of
join-irreducibles, and #(Irr(Q)) = k. If f: Irr(Q) — [k] is an
order-preserving map, then f induces an EL-labeling of Q).

General idea: a covering I < J of order ideals in Irr(Q) is
labeled with J \ I.
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(Q, w)-partitions

(Q,w)-partitions

Let @ be a poset on n elements and w : @ — [n] a bijection. A
dual (@, w)-partition is a function f : @ — [m] such that

© f is order-preserving, and

Q if s <t and w(s) > w(t), then f(z) < f(t).
The order polynomial Qg (m) is the number of functions f
satisfying the above conditions.



(Q, w)-partitions

(Q,w)-partitions

Given a poset Q with n elements and a labeling w, its
Jordan-Hélder set, £(Q,w), is the set of permutations

w = w(q1)w(q2) ... w(gn)

where ¢q1, ..., q, runs over all linear extensions of ().

He
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(Q, w)-partitions

(Q7 w)-partitions

Theorem (Stanley (EC1))
Let @ be a poset and w a natural labeling of @ (i.e. an
order-preserving bijection).

@ We may write

7, ZwEE(Q w) t1+desw
Z Qqu(m)t™ = (1 —¢t)#Q+1

m>0

© The coefficients in the numerator above are symmetric if
and only if @ is graded.




(Q, w)-partitions

Theorem (D. and Sagan)
For all n, h*(B,(132,312)) is symmetric.

Proof.

Earlier said that h] counts the number of sequences of edge
labels in maximal chains of @,,(132,312) with ¢ descents. These
sequences are exactly the linear extensions of Irr(Q, (132, 312)),
S0

i h;fti _ % Z tl-i—desw
=0

weL(Q,w)

Since Irr(Qy (132, 312)) is graded, the coefficients on each side
are symmetric. L]




(Q, w)-partitions

Our Rewards!

Corollary (D. and Sagan)
For all n, B,(132,312) is Gorenstein.

Theorem (Bruns and Rémer, 2007)

Every Gorenstein lattice polytope with a regular unimodular
triangulation has a unimodal h*-vector.

Corollary (D. and Sagan)

For all n, h*(B,(132,312)) is unimodal.




(Q, w)-partitions

Our Rewards!

Maximal chains in @,,(132,312) are in bijection with shifted
standard Young tableaux:
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(Q, w)-partitions

Our Rewards!

Maximal chains in @,,(132,312) are in bijection with shifted
standard Young tableaux:
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(Q, w)-partitions

Our Rewards!

Fact: the normalized volume of a lattice polytope is > h}.
So, by the hook length formula for shifted standard Young
tableaux. . .

Corollary (D. and Sagan)

The normalized volume of B, (132,312) is

n—1,.
] —1)!
Vol B,,(132,312) = <Z>'l_m
i=1 -




Open Questions

Some Wide-Open Questions

@ For “nice” special classes of II,
© what is the combinatorial structure of B, (II)?
© what is Vol(B,(II))?
® what is the h*-vector of B, (II)?
© What happens if we consider vincular or bivincular
patterns? Other kinds of patterns?

@ For which choices of II is B, (II) Gorenstein?

© What are the homotopy types of @, (II)? (in general their
order complexes aren’t necessarily spheres, or even
Cohen-Macaulay)
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