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Consider tiling the first quadrant of the plane with unit squares:

Q =

...

. . .

(3, 4)

Let (c , d) be the square in column c and row d .

A board is a
finite set of squares B ⊆ Q.
Ex. Let Bn be the n × n chess board. For example,

B3 =

attacking:

P = R

R

R

nonattacking:

P =
R

R

R

A placement P of rooks on B is attacking if there is a pair of rooks
in the same row or column. Otherwise it is nonattacking.
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Define the rook numbers of B to be

rk(B) = number of ways of placing k nonattacking rooks on B.

For any board B we have r0(B) = 1 and r1(B) = |B| (cardinality).
Ex. We have

rn(Bn) = (# of ways to place a rook in column 1)

·(# of ways to then place a rook in column 2) · · ·
= n · (n − 1) · · ·
= n!

There is a bijection between placements P counted by rn(Bn) and
permutations π in the symmetric group Sn where (c , d) ∈ P if and
only if π(c) = d .
Ex. Let

Dn = Bn − {(1, 1), (2, 2), . . . , (n, n)}.
Then

rn(Dn) = # of permutations π ∈ Sn with π(c) 6= c for all c

= the nth derangement number.
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A partition is a weakly increasing sequence (b1, . . . , bn) of
nonnegative integers.

A Ferrers board is B = (b1, . . . , bn)
consisting of the lowest bj squares in column j of Q for all j .

If x
is a variable and n ≥ 0 then the corresponding falling factorial is

x ↓n= x(x − 1) · · · (x − n + 1).

Theorem (Factorization Theorem: Goldman-Joichi-White)

For any Ferrers board B = (b1, . . . , bn) we have
n∑

k=0

rk(B)x ↓n−k=
n∏

j=1

(x + bj − j + 1).

Ex.

B = (1, 1, 3) = r0(B) = 1, r1(B) = 5, r2(B) = 4,

r3(B) = 0.

3∑
k=0

rk(B)x ↓3−k = 1 · x ↓3 +5 · x ↓2 +4 · x ↓1 = x3 + 2x2 + x

= (x + 1)x(x + 1) = (x + b1)(x + b2 − 1)(x + b3 − 2).
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n

x

B

R
Bx =

Claim: both sides of (1) equal rn(Bx). Placing rooks left to right
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Call boards B and B ′ rook equivalent, B ≡ B ′, if rk(B) = rk(B ′)
for all k ≥ 0.

Note that B ≡ B ′ implies

|B| = r1(B) = r1(B ′) = |B ′|.

Ex.

B = (1, 1, 3) = B ′ = (2, 3) =

For B,B ′: r0 = 1, r1 = 5, r2 = 4, rk = 0 for k ≥ 3 so B ≡ B ′.

A Ferrers board B = (b1, . . . , bn) is increasing if b1 < · · · < bn. In
the example above, B ′ is increasing but B is not.

Theorem (Foata-Schützenberger)

Every Ferrers board is rook equivalent to a unique increasing
board.
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The root vector of B = (b1, . . . , bn) is

ζ(B) = (0−b1, 1−b2, . . . , n−1−bn)

= (0, 1, . . . , n−1)−(b1, b2, . . . , bn)

The entries of ζ(B) are exactly the zeros of
∑

k rk(B)x ↓n−k .
So if B = (b1, . . . , bn) and B ′ = (b′1, . . . , b

′
n) then

B ≡ B ′ ⇐⇒ ζ(B) is a rearrangement of ζ(B ′).

Ex. B = (1, 1, 3) so ζ(B) = (0, 1, 2)− (1, 1, 3) = (−1, 0,−1).

B ′ = (0, 2, 3) so ζ(B ′) = (0, 1, 2)−(0, 2, 3) = (0,−1,−1) ∴ B ≡ B ′.

Every Ferrers board B is rook equivalent to a unique increasing board.

Proof sketch. Pad B with zeros so that ζ = ζ(B) starts with 0
and has all entries ≥ 0. Let m = max ζ(B). Rearrange ζ to form

ζ ′ = (0, 1, 2, . . . ,m, ζ ′m+1, . . . , ζ
′
n)

where ζ ′m+1 ≥ · · · ≥ ζ ′n. Then ∃ increasing B ′ with ζ(B ′) = ζ ′.

Ex. B = (0, 1, 1, 3) so ζ(B) = (0, 1, 2, 3)− (0, 1, 1, 3) = (0, 0, 1, 0).
Now ζ ′ = (0, 1, 0, 0) so B ′ = (0, 1, 2, 3)− (0, 1, 0, 0) = (0, 0, 2, 3).
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1. Let Bn be the n × n Ferrers board.
(a) Compute rk(Bn) for any 0 ≤ k ≤ n.

(b) Factor
∑n

k=0 rk(Bn)x ↓n−k .
(c) Find the unique increasing board equivalent to Bn.

2. Let Tn = (0, 1, 2, . . . , n − 1).
(a) Show that for 0 ≤ k ≤ n, rk(Tn) equals the number of

partitions of {1, . . . , n} into n − k subsets. This number is called a
Stirling number of the second kind.

(b) Factor
∑n

k=0 rk(Tn)x ↓n−k .
(c) Give a second proof of the identity in (b) by counting the

number of functions f : {1, . . . , n} → {1, . . . , x} (where x is a
positive integer) in two different ways.

(d) Find the unique increasing board equivalent to Tn.
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413–436, North-Holland, Amsterdam, 1970.

2. Jay R. Goldman, J. T. Joichi, and Dennis E. White, Rook
theory. I. Rook equivalence of Ferrers boards, Proc. Amer.
Math. Soc., 52:485–492, 1975.



THANKS FOR
LISTENING!


	Basics 
	The FactorizationTheorem
	An application
	Exercises and References

