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Basics

The FactorizationTheorem

An application

m-level rook placements

Comments and open questions



Consider tiling the first quadrant of the plane with unit squares:

Q =

...

. . .

(3, 4)

Let (c , d) be the square in column c and row d . A board is a
finite set of squares B ⊆ Q.
Ex. Let Bn be the n × n chess board. For example,

B3 =

attacking:

P = R

R

R

nonattacking:

P =
R

R

R

A placement P of rooks on B is attacking if there is a pair of rooks
in the same row or column. Otherwise it is nonattacking.



Define the rook numbers of B to be

rk(B) = number of ways of placing k nonattacking rooks on B.

For any board B we have r0(B) = 1 and r1(B) = #B (cardinality).
Ex. We have

rn(Bn) = (# of ways to place a rook in column 1)

·(# of ways to then place a rook in column 2) · · ·
= n · (n − 1) · · ·
= n!

There is a bijection between placements P counted by rn(Bn) and
permutations π in the symmetric group Sn where (c , d) ∈ P if and
only if π(c) = d .
Ex. Let

Dn = Bn − {(1, 1), (2, 2), . . . , (n, n)}.
Then

rn(Dn) = # of permutations π ∈ Sn with π(c) 6= c for all c

= the nth derangement number.



A partition is a weakly increasing sequence (b1, . . . , bn) of
nonnegative integers. A Ferrers board is B = (b1, . . . , bn)
consisting of the lowest bj squares in column j of Q for all j . If x
is a variable and n ≥ 0 then the corresponding falling factorial is

x ↓n= x(x − 1) · · · (x − n + 1).

Theorem (Factorization Theorem: Goldman-Joichi-White)

For any Ferrers board B = (b1, . . . , bn) we have
n∑

k=0

rk(B)x ↓n−k=
n∏

j=1

(x + bj − j + 1).

Ex.

B = (1, 1, 3) = r0(B) = 1, r1(B) = 5, r2(B) = 4,

r3(B) = 0.

3∑
k=0

rk(B)x ↓3−k = 1 · x ↓3 +5 · x ↓2 +4 · x ↓1 = x3 + 2x2 + x

= (x + 1)x(x + 1) = (x + b1)(x + b2 − 1)(x + b3 − 2).



n∑
k=0

rk(b1, . . . , bn)x ↓n−k=
n∏

j=1

(x + bj − j + 1). 1 2 (1)

Proof. It suffices to prove (1) for x a positive integer. Consider

n

x

B

R
Bx =

Claim: both sides of (1) equal rn(Bx). Placing rooks left to right

rn(Bx) =
n∏

j=1

(# of unattacked squares in column j)

= (x + b1)(x + b2 − 1) . . . = RHS of (1).

rn(Bx) =
n∑

k=0

(# of ways to put k rooks on B and n − k on R)

=
n∑

k=0

rk(B) · x(x − 1) . . . (x − n + k + 1) = LHS of (1).



Call boards B and B ′ rook equivalent, B ≡ B ′, if rk(B) = rk(B ′)
for all k ≥ 0. Note that B ≡ B ′ implies

#B = r1(B) = r1(B ′) = #B ′.

Ex.

B = (1, 1, 3) = B ′ = (2, 3) =

For B,B ′: r0 = 1, r1 = 5, r2 = 4, rk = 0 for k ≥ 3 so B ≡ B ′.

A Ferrers board B = (b1, . . . , bn) is increasing if b1 < · · · < bn. In
the example above, B ′ is increasing but B is not.

Theorem (Foata-Schützenberger)

Every Ferrers board is rook equivalent to a unique increasing
board.



The root vector of B = (b1, . . . , bn) is

ζ(B) = (0−b1, 1−b2, . . . , n−1−bn) = (0, 1, . . . , n−1)−(b1, b2, . . . , bn)

The entries of ζ(B) are exactly the zeros of
∑

k rk(B)x ↓n−k .
So if B = (b1, . . . , bn) and B ′ = (b′1, . . . , b

′
n) then

B ≡ B ′ ⇐⇒ ζ(B) is a rearrangement of ζ(B ′).

Ex. B = (1, 1, 3) so ζ(B) = (0, 1, 2)− (1, 1, 3) = (−1, 0,−1).

B ′ = (0, 2, 3) so ζ(B ′) = (0, 1, 2)−(0, 2, 3) = (0,−1,−1) ∴ B ≡ B ′.

Every Ferrers board B is rook equivalent to a unique increasing board.

Proof sketch. Pad B with zeros so that ζ = ζ(B) starts with 0
and has all entries ≥ 0. Let m = max ζ(B). Rearrange ζ to form

ζ ′ = (0, 1, 2, . . . ,m, ζ ′m+1, . . . , ζ
′
n)

where ζ ′m+1 ≥ · · · ≥ ζ ′n. Then ∃ increasing B ′ with ζ(B ′) = ζ ′.

Ex. B = (0, 1, 1, 3) so ζ(B) = (0, 1, 2, 3)− (0, 1, 1, 3) = (0, 0, 1, 0).
Now ζ ′ = (0, 1, 0, 0) so B ′ = (0, 1, 2, 3)− (0, 1, 0, 0) = (0, 0, 2, 3).



Fix a positive integer m. Partition the rows of Q into levels where
the i th level consists of rows (i − 1)m + 1, (i − 1)m + 2, . . . , im.
Ex. If m = 2 then

level 1

{level 2

{
. . .

An m-level rook placement on B is a set P of rooks with no two in
the same level or column. A 1-level rook placement is just an
ordinary placement. The m-level rook numbers of B are

rk,m(B) = number of m-level rook placements on B with k rooks.

Ex. If m = k = 2 and

B = (1, 2, 3) =

∴ r2,2(B) = 3 :

R

R

R

R

R

R



The m-level rook placements are related to Cm oSn where Cm is
the order m cyclic group and Sn is the nth symmetric group, e.g.,

rn,m(

n︷ ︸︸ ︷
mn, . . . ,mn) = (mn)(mn −m) · · · (m) = mnn! = #(Cm oSn).

Define the m-falling factorials by

x ↓n,m= x(x −m)(x − 2m) · · · (x − (n − 1)m).

A singleton board is B = (b1, . . . , bn) with at most one bj in each
of the open intervals (0,m), (m, 2m), (2m, 3m), . . . .

Theorem (Briggs-Remmel)

If B is a singleton board then

n∑
k=0

rk,m(B)x ↓n−k,m =
n∏

j=1

(x + bj − (j − 1)m). 1 2

Given an integer m, define the mod m floor function by

bncm = largest multiple of m which is less than or equal to n.

Ex. b17c3 = 15 since 15 ≤ 17 < 18.



Define a zone, z = z(B), of a Ferrers board B = (b1, . . . , bn) to be
a maximal subsequence (bi , . . . , bj) with

bbicm = · · · = bbjcm.
Given a zone z = (bi , . . . , bj) define its remainder to be

ρ(z) =

j∑
t=i

(bt − bbtcm).

Ex. If m = 3 then B = (1, 1, 2, 3, 5, 7) has zones
∴ z = (1, 1, 2), z ′ = (3, 5), z ′′ = (7).
Also ρ(z) = 1 + 1 + 2 = 4, ρ(z ′) = 0 + 2 = 2, ρ(z ′′) = 1.

Theorem (Barrese-Loehr-Remmel-S)

Let B = (b1, . . . , bn) be any Ferrers board. Then

n∑
k=0

rk,m(B)x ↓n−k,m=
n∏

j=1

(x + bbjcm − (j − 1)m + εj)

where
εj =

{
ρ(z) if bj is the last column in zone z,
0 else.



n∑
k=0

rk,m(B)x ↓n−k,m=
n∏

j=1

{
x + bbjcm − (j − 1)m + ρ(z) if bj last in z ,

x + bbjcm − (j − 1)m else.

Ex. Recall that if m = 3 and B = (1, 1, 2, 3, 5, 7) then we have
zones z = (1, 1, 2), z ′ = (3, 5), z ′′ = (7), and remainders
ρ(z) = 1 + 1 + 2 = 4, ρ(z ′) = 0 + 2 = 2, ρ(z ′′) = 1. Thus

n∑
k=0

rk,m(B)x ↓n−k,m= (x + 0− 0 + 0)(x + 0− 3 + 0)(x + 0− 6 + 4)

·(x + 3− 9 + 0)(x + 3− 12 + 2)(x + 6− 15 + 1).

BLRS implies Goldman-Joichi-White: If m = 1 then it is clear that
the LHS of both equations are the same. Also bbjc1 = bj for all j .
So ρ(z) = 0 for all z . Thus the RHS’s also agree.
BLRS imples Briggs-Remmel: Clearly the LHS’s are the same. If B
is singleton, then bbjcm = bj for every bj in a zone except possibly
the last. For the last bj , bbjcm + ρ(z) = bbjcm + ρ(bj) = bj . So
RHS’s agree factor by factor.



1. m-level rook equivalence. Say B,B ′ are m-level rook
equivalent if rk,m(B) = rk,m(B ′) for all k. Call B = (b1, . . . , bn)
m-increasing if b1 > 0 and bj ≥ bj−1 + m for j ≥ 2. Note that B is
1-increasing if and only if B is increasing.

Theorem (BLRS)

Every Ferrers board is m-level rook equivalent to a unique
m-increasing board.



2. A p, q-analogue. Permutation π = a1 . . . an ∈ Sn has inversion
set and inversion number

Inv π = {(i , j) | i < j and ai > aj}, and inv π = # Inv π.

If B is a board then the hook of (i , j) ∈ B, Hi ,j , is all cells directly
south or directly east of (i , j). If P is a rook placement on B
then the Rothe diagram of P is the skew diagram

R(P) = B \ ∪(i ,j)∈PHi ,j

If Pπ is the permutation matrix of π then inv π = #R(Pπ).
BLRS have a generalization of the factor theorem with two
parameters p, q keeping track of inversions and non-inversions.
Ex. π = 4132 =⇒ Inv π = {(1, 2), (1, 3), (1, 4), (3, 4)}, inv π = 4.

H2,3 =

R

R

R

R
R(Pπ) =

4 > 3

4 > 2

4 > 1

3 > 2



3. Counting equivalence classes. Write ζ ≥ 0 if ζ is a
nonnegative sequence. In this case, the multiplicity vector of ζ is

n(ζ) = (n0, n1, . . . ) where ni = the number of i ’s in ζ.

Theorem (Goldman-Joichi-White)

If Ferrers board B has ζ = ζ(B) ≥ 0 and n(ζ) = (n0, n1, . . . ) then

# of Ferrers boards equivalent to B =
∏
i≥0

(
ni + ni+1 − 1

ni − 1

)
.

The m-root vector of B = (b1, . . . , bn) is

ζm(B) = (0− b1,m − b2, 2m − b3, . . . , (n − 1)m − bn).

Theorem (BLRS)

Let B be singleton with ζ = ζm(B) ≥ 0 and n(ζ) = (n0, n1, . . . ).

# of singleton boards equivalent to B =
∏
i≥0

(
nim + · · ·+ nim+m − 1

nim − 1, nim+1, . . . , nim+m

)
.

It would be interesting to find a result holding for all Ferrers B.



4. File placements. A file placement F on B is a placement
of rooks with no two in the same column. Fix m ≥ 1 and let the
m-weight of F be

wtm F = 1↓y1,m ·1↓y2,m · · ·
where yi is the number of rooks of F in row i ≥ 1. Let

fk,m(B) =
∑
F

wtm F

where the sum is over all file placements F of k rooks on B.
Ex.

R R R

R R

F =

F has y1 = 3, y2 = 0, y3 = 2.
If m = 4 then
wt4 F = 1↓3,4 ·1↓0,4 ·1↓2,4

= (1)(−3)(−7) · (1)(−3) = −63.

Theorem (BLRS)

For any Ferrers board B = (b1, . . . , bn)

n∑
k=0

fk,m(B)x ↓n−k,m =
n∏

j=1

(x + bj − (j − 1)m).



5. Higher q, t-Catalan numbers. The m-triangluar board is

∆n,m = (0,m, 2m, . . . , (n − 1)m).

If B = (b1, . . . , bn) ⊆ ∆n,m then ζm(B) = (z1, . . . , zn) gives the
heights of the columns of ∆n,m \ B. Define aream(B) = #B
and

dinvm(B) =
m−1∑
k=0

#{i < j : 0 ≤ zi − zj + k ≤ m}.

The higher q, t-Catalan numbers are

Cn,m(q, t) =
∑

B⊆∆n,m

qdinvm(B)taream(∆n,m\B).

We also have

Cn,m(q, t) =
∑

B⊆∆n,m

qaream(∆n,m\B)tbouncem(B)

for another statistic bouncem(B). Using the Cn,m(q, t), BLRS
derives a formula for the number of boards m-weight equivalent to
a given board as a product of binomial coefficients.



6. Hyperplane arrangements. Given π ∈ Sn the corresponding
inversion arrangement is the set of hyperplanes in Rn

A(π) = {xi = xj | (i , j) ∈ Inv π}.
If π = a1 . . . an then its non-inversion board is

B(π) = {(i , j) | i < j and ai < aj} ⊆ Bn.

Theorem (Hultman, Lewis-Morales)

For all π ∈ Sn, the number of regions of the arrangement A(π)
equals the rook number rn(Bn \ B(π)).

Barrese, Hultman and S are looking for a type B analogue.

Ex. If π = 213 then Inv π = {(1, 2)} and A(π) = {x1 = x2}.
So the non-inversions of π are (1, 3), (2, 3) and

B(π) =

R

R

R

R

R

R
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