
Partially Ordered Sets and their Möbius Functions: Exercises
Encuentro Colombiano de Combinatoria 2014

Lecture I: The Möbius Inversion Theorem

1. (a) Prove that if S ⊆ T in Bn then [S, T ] ∼= B|T−S|.

(b) Prove that if c|d in Dn then [c, d] ∼= Dd/c.

2. Prove that if the prime factorization of n is n = pm1
1 · · · p

mk
k then

Dn
∼= Cm1 × · · · × Cmk

.

3. A partition of a set S is a family π of nonempty sets B1, . . . , Bk called blocks such that
]iBi = S (disjoint union). We write π = B1/ . . . /Bk ` S and often leave out set braces
and commas in the blocks. The partition lattice is

Πn = {π : π ` [n]}.

with the partial orderB1/ . . . /Bk ≤ C1/ . . . /Cl if for eachBi there is a Cj withBi ⊆ Cj.

(a) Draw Π3.

(b) Show Πn has 0̂ = 1/2/ . . . /n and 1̂ = 12 . . . n.

(c) Prove that if π = B1/ . . . /Bk then [π, 1̂] ∼= Πk.

(d) Prove that if π = B1/ . . . /Bk then [0̂, π] ∼= Π|B1| × · · · × Π|Bk|.

(e) Combine the two previous results to show that if π ≤ σ then [π, σ] is isomporphic
to a product of partition lattices.

4. For any poset, P , prove that the map I(P ) → M(P ) by α 7→ Mα preserves addition
and scalar multiplication.

5. Show that if f : P → Q is an isomorphism of posets and x, y ∈ P then

µP (x, y) = µQ(f(x), f(y)).

6. Prove that if d ∈ Dn with prime factorization d = pm1
1 · · · p

mk
k then

µ(d) =

{
(−1)k if m1 = . . . = mk = 1,
0 if mi ≥ 2 for some i.

7. Prove the Dual Möbius Inversion Theorem: Consider two functions f, g : P → R.
Then

f(x) =
∑
y≥x

g(y)

for all x ∈ P if and only if

g(x) =
∑
y≥x

µ(x, y)f(y)

for all x ∈ P .
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8. (Research Problem) Let α = a1 . . . ak and β = b1 . . . bk be sequences of distinct integers.
Call α and β order isomorphic and write α ≡ β if, for all indices i and j,

ai < aj ⇐⇒ bi < bj.

Intuitively, α and β are order isomorphic if the elements appearing in α are in the
same relative order as those appearing in β. To illustrate, the sequences 132, 253 and
587 are all order isomorphic since, in each one, the smallest element is first, the largest
element is second, and the middle element is third.

Let S denote the set of all permutations α = a1 . . . an of [n] for all n ≥ 0. Call α ∈ S
a pattern in β ∈ S if there is a subsequence β′ of β with α ∼= β′. For example, if our
pattern is α = 132 then the permutation β = 425613 contains two copies of α, namely
β′ = 253 and β′ = 263. Partially order S by letting α ≤ β if α is a pattern in β.
Herbert Wilf asked to determine the Möbius function of S. Partial results are known,
but no complete characterization.

Lecture II: Graph Coloring

1. Let G = (V,E) be a graph with chromatic polynomial

p(G; t) = a0t
n + a1t

n−1 + · · ·+ an

(a) Prove that n = |V |.
(b) Prove that a0 = 1 and a1 = −|E|.
(c) Prove that the coefficients alternate in sign with a2i ≥ 0 and a2i+1 ≤ 0 for all i.

(d) Prove that if G has components G1, . . . , Gk then P (G) = P (G1) . . . P (Gk).

2. A cycle in a graph G is a sequence of distinct vertices C : v1, . . . , vk with vivi+1 ∈ E(G)
for all i modulo k.

(a) A tree is a graph T which is connected and has no cycles. Show that if |V (T ) = n
then

p(T ; t) = t(t− 1)n−1.

(b) A forest is a graph F all of whose components are trees. Show that if |V (F )| = n
and F has k components then

p(F ; t) = tk(t− 1)n−k.

(c) Show that if T is a tree with |V (T )| = n then the bond lattice of T satisfies

L(T ) ∼= Bn−1.

You may assume that all trees on n vertices have n− 1 edges.

3. The complete graph on n vertices, Kn, has |V (Kn)| = n and all possible
(
n
2

)
edges.
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(a) Show that the bond lattice of Kn satisfies

L(Kn) ∼= Πn.

where Πn is the partition lattice of Exercise 3 from Lecture I.

(b) Use part (a) to determine χ(Πn; t).

(c) Use part (b) to determine µ(1̂) in Πn.

(d) Use part (c) and Exercise 3 from Lecture I to determine µ(π, σ) for any π ≤ σ in
Πn.

4. Let P,Q be ranked posets.

(a) Prove that P ∼= Q =⇒ χ(P ; t) = χ(Q; t).

(b) Prove that P ×Q is ranked and χ(P ×Q; t) = χ(P ; t)χ(Q; t).

5. (a) Prove that Cn is semimodular.

(b) Prove that Dn is semimodular.

6. Show that for any graph G we have

X(G;x) =
∑

K∈L(G)

µ(K)pλ(K).

7. Call graphs G and H isomorphic, G ∼= H, if there is a bijection f : V (G) → V (H)
such that

vw ∈ E(G) ⇐⇒ f(v)f(w) ∈ E(H).

(a) Show that if G ∼= H then X(G;x, t) = X(H;x, t).

(b) (Research Problem) We saw in Exercise 2 above that any two trees on n vertices
have the same chromatic polynomial. Stanley conjectured that the opposite is true
for the chromatic generating function. Precisely, if T, T ′ are trees with T 6∼= T ′

then X(T ;x, t) 6= X(T ′;x, n).

Lecture III: Topology of Posets

1. (a) The n-dimensional tetrahedron (simplex), T n, is the simplicial complex which
consists of all subsets of the set {0, 1, . . . , n}. Show that

∆(Cn) = T n−2 ∼= Bn−2.

(b) Given a geometric simplicial complex ∆ its barycentric subdivision, ∆∗, is the
simplicial complex whose simplices are all those of the form v1, v2, . . . , vk where
F1 ⊂ F2 ⊂ . . . ⊂ Fk is a sequence of faces of ∆ and vi is the barycenter (cen-
troid/center of mass) of Fi for all i. Show that

∆(Bn) = (∂T n−1)∗ ∼= Sn−2.
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2. Show that the labelings given for the four examples in the lecture are indeed EL-
labelings of Cn, Bn, Dn and Πn by checking the two conditions in the definition for
every interval [x, y] (not just the interval [0̂, 1̂]).

3. Suppose that P is a graded poset with an EL-labeling and F1, . . . , Fk is the list of
saturated 0̂–1̂ chains in lexicographic order.

(a) Show that F 1, . . . , F k is a shelling of ∆(P ).

(b) Show, for all j, that if r(F j) = F j then `(Fj) is strictly decreasing

4. Fill in the details of the shelling proof that

µ(Dn) =

{
(−1)k if n = p1 . . . pk distinct primes,
0 else.

5. If P is a poset, then a multichain with n elements in P is

M : x1 ≤ x2 ≤ · · · ≤ xn.

Define the zeta polynomial of P to be, for n ≥ 2,

Z(P ;n) = the number of multichains in P with n− 1 elements.

(a) Show that if P is bounded then

Z(P ;n) = ζn(0̂, 1̂)

(b) For any poset P , show that

Z(P ;n) =
∑
i≥2

bi

(
n− 2

i− 2

)
where

bi = the number of chains in P with i− 1 elements.

(c) Use part (b) to show that Z(P ;n) is a polynomial in n with degree

d = length of the longest chain in P ,

and leading coefficient bd+1/d!

(d) Use part (c) to extend the definition of Z(P ;n) to n = 1. Show that if P is
bounded then

Z(P ; 1) = χ̃(P ) + 1.

6. (Research Problem) Consider the poset S defined in Exercise 8 from Lecture 1. Char-
acterize which intervals of S are shellable. Characterize which intervals of S are
EL-shellable.
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Lecture IV: Factoring the Characteristic Polynomial

1. Prove that if P/ ∼ is a homogeneous quotient then the relation X ≤ Y is reflexive and
transitive.

2. Prove that the three conditions of the Main Theorem hold for any π ∈ Πn (not just
π = 1̂).

3. Prove that for any poset P and any x, y, z ∈ P with y ≤ z we have

y ∨ (x ∧ z) ≤ (y ∨ x) ∧ z.

4. Give a direct proof (without using the increasing forest generating function) that if a
graph has a perfect elimnation order then its chromatic polynomial has nonnegative
integral roots.

5. If P is a poset and X ⊆ P then the lower order ideal generated by X is

L(X) = {y ∈ P : y ≤ x for some x ∈ X}.

Also, if P has a 1̂ then a coatom of P is d ∈ P with d� 1̂.

(a) Let P/ ∼ be a homogeneous quotient. Suppose that for all X ∈ T/ ∼ we have∑
y∈L(X)

µ(y) = δ0̂,X .

Prove that
µ(X) =

∑
x∈X

µ(x).

(b) Let P be bounded and d a coatom of P . Let ∼ be the equivalence relation with
all equivalence class {d, 1̂} and all other classes being singletons. Show that P/ ∼
is homogeneous and

µ([1̂]) = µ(d) + µ(1̂)

where [x] ∈ P/ ∼ is the equivalence class of x ∈ P .

(c) Use part (b) to prove Phillip Hall’s Theorem: for any poset P and x, y ∈ P we
have

µ(x, y) =
∑
i≥0

(−1)ici

where
ci = number of x–y chains of length i.

(d) Show that under the hypotheses of part (b), if P is a lattice then so is P/ ∼ where

[x] ∨ [y] = [x ∨ y]

for all x, y ∈ P , and
[x] ∧ [y] = [x ∧ y]

for all x, y ∈ P such that [x], [y] 6= [1̂].
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(e) Use parts (b) and (d) to prove Weisner’s Theorem: Let L be a lattice with |L| ≥ 2
and a ∈ L− {0̂}. Then

µ(1̂) = −
∑

x6=1̂, x∨a=1̂

µ(x).

(f) Use part (e) to rederive the fact that in Πn we have

µ(1̂) = (−1)n−1(n− 1)!

6. (Research Problem) A weighted set partition of [n] is a set

{(B1, w1), (B2, w2), . . . , (Bk, wk)}

where B1/B2/ . . . /Bk ` [n] and the wi ∈ {0, 1, . . . , |Bi| − 1}, 1 ≤ i ≤ k, are called
weights. Put a partial order on the set Wn of such partitions by starting with 0̂ =
{(1, 0), (2, 0), . . . , (n, 0)} and then defining the covering relation by

{(B1, w1), (B2, w2), . . . , (Bk, wk)}� {(C1, x1), (C2, x2), . . . , (Ck−1, xk−1)}

where
B1/B2/ . . . /Bk � C1/C2/ . . . /Ck−1

and if Bi and Bj were merged to form Cl then

xl = wi + wj or wi + wj + 1

with all other weights being unchanged. González D’León and Wachs have shown that

χ(Wn; t) = (t− n)n−1.

Can this result be derived using quotients?
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