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A partition of a set S is a family = of nonempty sets By, ..., B
called blocks such that W;B; = S (disjoint union). We write

m = By/.../Bx - S omitting braces and commas in blocks.

Ex. m = acf/bg/det{a,b,c.d, e, f, g}.

The partition lattice is M, = {w : =+ [n]} ordered by
By/.../Bx < Cy/.../Cif for each B; there is a C; with B; C C;.
If P has a 0 and a 1 we write 1(P) = 1.p(0, 1) and similarly for
other elements of /(P).

Ex. 123 2 p(m)
My =12/3 -1 13/2 -1 1/23 —1
~_ |
1/2/3 1

n |1 2 3 4 5 6
p(My[1 =1 2 —6 24 —120

Theorem
We have:  u(MNp) = (—1)"""(n—1)!




An (abstract) simplicial complex is a finite nonempty family A of
finite sets called faces such that

FeA and FCF = F eA.

A geometric realization of A has a (d — 1)-dimensional simplex
(tetrahedron) for each d-element setin A. The dimension of
FeAisdimF =#F —1. Face F is a vertex or edge if

dim F = 0 or 1, respectively.

Ex. A ={0,u,v,w,x, uv,uw, vw, wx, uvw}

dimu = 0 a vertex, u

dimuv = 1, an edge w X
dimuvw = 2. A=

uvw and wx are facets.

Not pure. v

Face F is a facet if it is containment-maximal in A. We say A

is pure of dimension d, and write dim A = d, if dim F = d for all
facets F of A.

Note. A simplicial complex pure of dimension 1 is just a graph.



Let A be pure of dimension d. We say A is shellable if there is
an ordering of its facets (a shelling) F, ..., Fx such that for
eachj < k:

Fi() (VicjFi) is a union of (d — 1)-dimensional faces of F;.

Ex. For the graph at right

uw, vw, wx, uv, xy, wy is a shelling.

So A is shellable.

Any sequence beginning uw, vw, xy u

is not a shelling since xy N (uw U vw) = (). F WF3
In the original shelling: A=F,

r(uw) =0, r(vw) = v, r(wx) = x,

r(uv) =uv, r(xy) =y, r(wy) = wy. v e 2 Fe

Note. A graph is shellable iff it is connected.
Given a shelling F4, ..., Fg, the restriction of F; is
r(Fj)={vavertexof Fj : Fj—v C (UijFj)}.



Let SY denote the d-sphere (sphere of dimension d). To form
the bouquet or wedge of k spheres of dimension d, V4S9, take
a point of each sphere and identify the points.

Ex.
X YRF X
w
Vves! = ~ fy Fs
F2 FG y

rtuw) =0, r(vw)=v, r(wx)=x, r(uv)=uv,

rixy) =y, r(wy)=wy.
If topological spaces X and Y are homotopic, write X ~ Y.

Theorem
If A is a shellable simplicial complex pure of dimension d, then

A ~ vkgd

where k is the number of facets satisfying r(F) = F in a
shelling of A. O



Let X be a toplogical space, say X C R” for some n. If X has
dimension d then we write X = X¢.

Ex. 1. S9 the d-sphere. For example S' is a circle.

2. B9, the closed d-ball. For example, B? is a closed disc.

The boundary of X = X9, 8X, is the set of p € X such that any
(deformed) open d-ball centerd at p contains points both in and
out of X.

Ex. 1.9BY =891,  2.987 =.

Call C = C' C X an i-cycle if 9C = (. Call two cycles
equivalent if they form the boundary of a subset of X.

Ex. If X is a hollow cylinder, then the two copies of S' at either
end are equivalent.

The ith reduced Betti number of X is

Bi(X) = minimum number of inequivalent i- cycles which are
not boundaries of some subset of X and generate all i-cycles.

If X ~ Y then 3;(X) = 3;(Y) for all i. We use reduced Betti
numbers since then 5y(X) = 0 for a connected X.



Proposition

We have .
s edy [ 1 ifi=d,
@w)_{oiﬁ#d

Proof.

We will prove this for S?. First consider i = 2. We have already
seen that 9S? = (), so S? is a cycle. And it can not be a
boundary, since if Y = S? then Y would have dimension 3 and
so Y ¢ S2. Thus (3,(S?) = 1.

Now consider i = 1. If we have a 1-cylce C ¢ S?, then C = oD
where D C S? is the disc interior to C. So every 1-cycle is also
a boundary and j;(S?) = 0.

Finally, for i = 0. S? is connected so (y(S?) = 0. O
Taking wedges adds reduced Betti numbers.

Corollary

We have k ifi=d,

@W@%:{Oiﬁid =



The reduced Euler characteristic of X is

X) = > (1) BilX) = =B _1(X) + Bo(X) = B1(X) + - --

i>_1
By the previous proposition 3;(vkS%) = k if i = d and zero else.
Corollary

We have {(vkS?) = (—1)%k. O

The ith face number of a simplicial complex A is
fi(A) = (# of faces of dimension /) = (# of faces of cardinality /i + 1.)

Theorem .
(B) =Y (X)) = ~f4(X)+ H(X) - H(X)+--- O

i>—1

Ex. A~Vv2ST £2L g(a) = 7(v2S") =

dmF=-1 = F=0 = f4(8)=1,
dmF =0 = F =vertex = f(A) = 5, A=
dmF=1 = F=edge = fi(A)=

i>2 = f(A)=0, ~A)=-1+5-6=-2.



If x,y € P (poset) then an x—y chain of length | in P is a
subposet C: x = xg < x1 < ... < x; = y. If Pis bounded, let

P=pP-{0,1}.
The order complex of a bounded P is
A(P) = set of all chains in P.
A subset of a chain is a chain so A(P) is a simplicial complex.

Ex. P = Cy4, 3 1
. Cyi= 2 and A(Cy) =
1 2 3
In general A(Cp,) ~ B°, a point.

Ex. P = B;,

12 13 23 1
o and A(B3) = 12 13
B3 =
I : I 2 3
1 2 3 23

In general A(B,) ~ S"2.



Lemma
InI(P): (¢ —98)(x,y) = #of x—y chains of length |.

Proof. We have (( — d)(x,y) = 1if x < y and zero else. So

C=0xy)= D (C=8)(X0,x1) (¢ = 6)(X-1,X)

X=X0,X1,--,XI=Y

= > 1 = # of x—y chains of length /. [J

X=Xp<X1<...<X|=Yy

Theorem o
In a bounded poset P with0 #1:  u(P) = X(A(P)).
Proof. Using the definition of 1, and the lemma,

W(P)=¢ 1 (P) = (8+ (¢~ 8) " (P) = X pmo(—1)(¢ — 8)(P)
= "1=1(—1)/(# of 0~1 chains of length / in P)
= > j»1(—1)"73(# of chains of length / — 2 in P)

= Y1 (=1)H(A(P) = X(A(P). [



A poset P is graded if it is bounded and ranked.

Ex. Our example posets Cy, By, Dy, M, are all graded.

Let E(P) be the edge set of the Hasse diagram of P. A labeling
¢: E(P) — Rinduces a labeling of saturated chains by

UXo <Xy <...<x) = (L(X0<Xq),...,0(x_1 < X))).

Ex. For By, let
(S<T)=T-S.
3 {1,2,3}1
2 T
{1,2} {1,3} {2,3}
Bi= 2l >y 3> |2
{13 3 {22 1 {3
1\2(/)/3

({1} <{1,3} < {1,2,3}) =(3,2).



Say saturated chain C has a property if ¢(C) has that property.
An EL-labelling of a graded poset P is ¢/ : E — R such that, for
each interval [x,y] C P

1. there is a unique weakly increasing x—y chain Cyy,
2. Cyy is lexicographically least among saturated x—y chains.

All four of our example posets have EL-labelings. We will give
the labeling and verify the two conditions for the interval [0, 1].

1.In Cp, let £(i — 1 <1 i) = i. Then there is only one saturated
chainand/(0<1<...an)=(1,2,...,n).

2. In By, IeAt KA(S <1 T)= T — S. Then ¢ is a bijection between
saturated 0—1 chains and permutations of [n]

0 <a{xi}<a{x, %} <...a1)=(x1,X,...,X)

There is a unique weakly increasing permutation, (1,2,...,n),
and it is lexicographically smaller than any other permutation.



3.InDp. letl(c<d)=d/c.
If n =TT, p™ then ¢ is a bijection between Djg— 18
saturated 0—1 chains and permutations of the

multiset m my
M: {{p17"'7p17'"7pk7"'7pk}}'

There is a unique weakly increasing
permutation of M and it is lexicographically least.

4. InMp, if 7 = By/.../Bx and merging B; with B; forms o then
{(m < o) = max{min B;, min B;}.

2

If C is a saturated 0—1 chain then M= 4 123 )
¢(C) is a permutation of {2,..., n}: / 2| \
for all 7,0 we have 2 < /(7 <o) < n, 12/3\ 133/2 /1/23

and m appears as a label in C at most once since after merging
it is no longer a min. Permutation (2, ..., n) only occurs once:

0(0<12/3/.../n<123/4/.../n<...<1).



Theorem (Bjorner, 1980)

Let P be a graded poset. If P has an EL-labelling then A(P) is
shellable. In fact, if Fy, ..., Fx is a list of the saturated 0—1

chains in lexicographic order, then F4, ..., Fy is a shelling of
A(P). Furthermore
u(P) = (—1)"P)(# of strictly decreasing F)). (1)

Proof of (??). Using the first half of the theorem
1(P) = X(A(P)) = (—1)dMAP)(# of F; with r(F;) = F)).

The power of —1 is as desired since dim A(P) = p(P) — 2. S

it sufflces to show that /(F;) is strictly decreasmg iff r(F}) =

“ =" (“<="is similar) Suppose F;: xg < ... < Xpis strlctly
decreasing. We must show that given any x, € fj there is F;
with i < jand F;N Fj = F; — {x;}. Now X;_1 <1 Xy < X;41 is strictly
decreasing. Let x,_1 < yr < X,11 be the weakly increasing chain
in [X-—1, Xr41]. Then F; = F; — {x;} U {y,} is lexicographically
smaller than F;. So i < jand FiN F; = Fj — {x:}. O

‘\71



Corollary
(@) u(Cp)=0ifn> 2.

(o) u(Bn) =(-1)",
(—=1)% ifn=py...pg distinct primes,

(©) 1(Dn) = { 0 else.
(d) u(Na) = (=1)"""(n—1)!

Proof. (a) C, has a single chain which is weakly increasing. So
it has no strictly decreasing chain and x(Cp) = (—1)"-0=0.
(b) The ¢(F;) are in bijection with the permutations of {1, ..., n}.
The unique strictly decreasing permutation is (n,n—1,...,1).
(c) Combine the proofs in (a) and (b).

(d) The ¢(F;) are permutations of {2, ..., n}. Suppose
UF))=(n,n—1,...,2)where F; =7y <m <...<mp_1. Then
71 IS obtained from my by merging {n} with another block,
giving n — 1 choices. So n — 1 is still a minimum of some block
which must be merged with one of the n — 2 other blocks to
form m. Continuing in this manner gives (n — 1)! chains. O



