Partially Ordered Sets and their Mdbius
Functions |I: The Mobius Inversion Theorem

Bruce Sagan
Department of Mathematics
Michigan State University
East Lansing, M| 48824-1027
sagan@math.msu.edu
www.math.msu.edu/~sagan

June 10, 2014






Lecture 1: The Mobius Inversion Theorem.

Introduction to partially ordered sets and Mdébius functions.
Lecture 2: Graph Coloring.

The chromatic polynomial of a graph and the characteristic
polynomial of its bond lattice.

Lecture 3: Topology of Posets.

The order complex and shellability.

Lecture 4: Factoring the Characteristic Polynomial
Quotients of posets and applications.



Example A: Combinatorics.
Given a set, S, let

= |S| = cardinality of S.

The Principle of Inclusion-Exclusion or PIE is a very useful tool
in enumerative combinatorics.

Theorem (PIE)
Let U be a finite setand Uy, ..., U, C U. We have

n
‘U—U | = =Y Ui+ > Uy
i=1

1<i<n 1<i<j<n




Example B: Theory of Finite Differences.

N = the nonnegative integers.
P = the positive integers.
R = the real numbers.

If one takes a function f : N — R then there is an analogue of
the derivative, namely the difference operator

Af(n) =f(n)—f(n—1)

(where f(—1) = 0 by definition). There is also an analogue of
the integral, namely the summation operator

Sf(n) = Zn: £(i).
i=0

The Fundamental Theorem of the Difference Calculus states:

Theorem (FTDC)
Iff :N — R then

ASf(n) = f(n). O



Example C: Number Theory
If d, n € Z then write d|n if d divides evenly into n. The
number-theoretic Mébius function is i : P — 7Z defined as

(n) = 0 if nis not square free,
FYU= 0 (=1)% it n = product of k distinct primes.

The importance of x lies in the number-theoretic Mdbius
Inversion Theorem or MIT.

Theorem (Number Theory MIT)
Letf,g: P — R satisfy

f(n)=)_g(d)

din

for all n € P. Then

g(n) =S u(n/d)f(d).

din



M@obius inversion over partially ordered sets (posets) is
important for the following reasons.

1.
2.
3.

It unifies and generalizes the three previous examples.
It makes the number-theoretic definition transparent.

It encodes topological information about partially ordered
sets.

It can be used to solve combinatorial problems.



A partially ordered set or poset is a set P together with a binary
relation < such that for all x, y,z € P:

1. (reflexivity) x < x,

2. (antisymmetry) x < y and y < x implies x =y,

3. (transitivity) x < y and y < z implies x < z.
Given any poset notation, if we wish to be specific about the
poset P involved, we attach P as a subscript. For example,
using <p for <. We also adopt the usual conventions for
inequalities. For example, x < y means x < y and x # y. We
write x || y if x, y are incomparable, thatis x £ y and y £ x. All
posets will be finite unless otherwise stated.
If x,y € Pthen x is covered by y or y covers x, written x < y, if
X < y and there is no z with x < z < y. The Hasse diagram of
P is the (directed) graph with vertices P and an edge from x up
toyifx<y.



Example: The Chain.
The chain of length n is

Cn:{0,1,...,n}

with the usual < on the integers.




Example: The Boolean Algebra.
Let
[n]={1,2,...,n}.

The Boolean algebra is
B,={S : SC[n]}

partially orderedby S < T ifandonly if SC T.

{1,2,3}

Note that B3 looks like a cube.



Example: The Divisor Lattice.
Given n € P the corresponding divisor lattice is

Dp={deP : d|n}

partially ordered by ¢ <p, dif and only if c|d.

18

Note that Dyg looks like a rectangle.



In a poset P, a minimal element is x € P such that there is no
y € Pwith y < x. A maximal element is x € P such that there
isno y € Pwith y > x.

Example. The poset on the left has X
minimal elements u and v,

and maximal elements x and y. u

S <

<

A poset has a zero if it has a unique minimal element, 0. A
poset has a one if it has a unique maximal element, 1. A poset
if bounded if it has botha 0 and a 1.

Example. Our three fundamental examples are bounded:

0c,=0, 1g,=n, 0g =0, 1g,=[n, O0p,=1, 1p,=n

If x < yin P then the corresponding closed interval is
x,¥y]={z : x<z<y}

Open and half-open intervals are defined analogously. Note
that [x, y] is a poset in its own right and it has a zero and a one:

Opy1 =% Ty =V



Example: The Chain.
In Cg we have the interval

This interval looks like Cs.




Example: The Boolean Algebra.
In B; we have the interval

[{3},{2,8,5,6}] =

Note that this interval looks like Bs.



Example: The Divisor Lattice.
In Dgg we have the interval

[2,40] =

Note that this interval looks like Dyg.

40



For posets P and Q, an order preserving (op) mapis f: P — Q
with

x<py = f(x)<qf(y)
An isomorphism is a bijection f : P — Q such that both f and
f~1 are op. In this case P and Q are isomorphic, written P = Q.

Proposition

Ifi <jinCpthenli,j]= Cj_;.

IfS - T in Bn then [S T] = B‘T,S‘.

If c|d in Dy then[c,d] = Dy/c.

Proof for Cp. Define f : [i,j] — C;_; by f(k) = k —i. Then fis
op since

k<l = k—i<l—-i = f(k)<Kl).

Also f is bijective with inverse f~'(k) = k + i. Similarly, one can
prove that f~' is op. O



If P and Q are posets, then their product is
PxQ={(ax) :aeP, xeQ}
partially ordered by

(a?X)SPXQ(bay) — a<pb and X<qV

Ex.
(b,2)
z
b I (b,y)
X Yy = ~
a (b, x)
X
(a x)

n

——f—
If Pis aposetthenlet P"=P x --- x P.



Proposition
For the Boolean algebra

B, = (Cy)".
If the prime factorization of n is n = pf“ . ~p}’("“, then

Dp= Cpy x -+ x Cp,.

Proof for B,. Since C; = {0, 1}, define f: B, — (Cq)" by

1 ifies,

0 ifigsS.

for 1 <i < n. To show f is op, suppose that we have

f(S) = (by,...,by)and f(T) = (¢y,...,cn). Now S < Tin B,
means S C T. Equivalently, i € Simplies i € T for every

1 <j<n Soforeach1 < i< nwehave b; < ¢;in Cy. But
then (by,...,bn) < (Cy,...,Cn)in (Cy)", thatis, f(S) < f(T).
Constructing f~' and proving it op is similar. O

£(S) = (b1, ba,...,by) where b= {



The incidence algebra of a finite poset P is the set
I(P)={a:PxP—>R|alx,y)=0if x £ y},

together with the operations:

1. (addition) (o + B)(x, y) = a(x,y) + B(x, ¥),
2. (scalar multiplication) (ka)(x,y) = k- a(x,y) for k € R,

3. (convolution) (a * B)(X,¥) = >_,cp (X, 2)B(2,y).
, ] 1 ifx=y,
Ex. I(P). .has Kronecker’s delta: 6(x, y) = { 0 ifx£y
Proposition
Foralla € (P):axd=0+a=q.
Proof of o« x 6 = . Forany x,y € P:
(ax0)(x,y) =D a(x,2)d(z,y) = a(x,¥)3(y.y) = a(x,y). [

V4
Note. We have

(axB)(x,y)= Y alx,2)5(z,y)
ze[x,y]

since a(x, z) # 0 implies x < zand §(z,y) # 0 implies z < y.



An algebra over a field F is a set A together with operations of
sum (+), product (e), and scalar multiplication (-) such that

1. (A,+,e)is aring,

2. (A, +,-) is a vector space over F,

3. k-(aeb)=(k-a)eb=ae(k-b)forallk € F, a,b e A.
Ex. The n x n matrix algebra over R is

Mat,(R) = all n x n matrices with entries in R.

Ex. The Boolean algebra is an algebra over > where, for all
S, TeBg:

1. S+ T=(SUT)-(SNT),

2. SeT=8nNT,

3.0-S=0and1-S=S.

Ex. The incidence algebra /(P) is an algebra with convolution
as the product.

Note. Often - and e are suppressed since context makes it
clear which multiplication is meant.



Let L: xq,..., X, be alist of the elements of P. An L x L matrix
has rows and columns indexed by L. The matrix algebra of P is

M(P) = {M € Matp(R) | Mis L x Land My, =0ifx £ y.}
Note that M(P) is a subalgebra of Mat,(R).

Ex. For By, let L: 0, {1}, {2}, {1,2}. Then a typical element of
M(Bs) is

0 {1} {2y {1.2)

0 VARVERRVERRV

M= {1} 0 9 0 O
2} 0 0 O O
(1,2} 0O 0 0 ©

where the O’s can be replace by any real numbers.

Thelist L: x1,..., X is a linear extension of P if x; < x; in P
implies / < j, that is, x; comes before x; in L. Henceforth we will
take L to be a linear extension. This makes each M € M(P)
upper triangular:

i>j = X£Xx = MX“XJ.:O.



An isomorphism of algebras A and B is a bijection f : A— B
such that for alla,b € Aand k € F,

f(a+ b) =f(a)+ f(b), f(ae b) =f(a)e f(b), f(k-a)=k-f(a).
Given any a € I(P) we let M* be the matrix with entries

Mg, = a(x,y).
Ex. We have M° = | where [ is the identity matrix.

Theorem
The map o — M* is an algebra isomorphism I(P) — M(P).

Proof that product is preserved. We wish to show
M8 = M>MP. But given x, y € P:

Mgy = (axB)(x,y) =Y a(x,2)8(z.y) = (M*MP),,. O
Proposition i

If o € I(P) then o~ exists if and only if a(x, x) # 0 for all x € P.
Proof. By the previous theorem

Ja™! = IM*)T = detM* £0 < []ealx.x)#0. O
xeP



The zeta function of P is ¢ € I(P) defined by

1 itx <y,

The Mébius function of Pis = ¢~'. Note that y is well defined
by the previous proposition. From the definition of u:

6(x,y)=(n*xQ)(x.y) = Z u(x,z)¢(z,y) = Z n(x, z).

zE[x,y] ze[x,y]
Equivalently,

if x =y then u(x,x) =1,
if x <ythen ),y 1u(x,2) =0.

Note. If P has a zero then we write 1(y) = (0, y), and so

p(0) =1,andif y > 0 then > " u(z) = 0.

z<y



0 then > " () = 0.
z<y

1, and if y > 0 then

u(0) =

Example The Chain.
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Example: The Boolean Algebra.

{1,2,3} —1

{1,2} 1
By —
{1} —1
0
w(0) = u(0) =1,
p({1H) +p(0) =0 = p({1}) = -1,
p({1,2}) + p({1}) + p({2}) + u(0) =0 = p({1, 2})—1

/1’({17273})"’_ +N(®):O = M{1)273}):

Conjecture
In B, we have 1(S)

I
—~

—
—

B%)



Example: The Divisor Lattice.

Conjecture
If d € Dy has prime factorization d = p;

D fm == me=1,
pl(d) = { 0 if m; > 2 for some i.



Theorem

1. Iff: P— Qs anisomorphism and x,y € P then
np(x.y) = pa(f(x). f(y))-
2. Ifa,be Pandx,y € Q then
:U’PXQ((a? X)/(b*y)) :MP(aa b)MO(XaY) (1)
Proof for P x Q. For any poset R, the equation
Zte[ns] w(r,t) = 4(r, s) uniquely defines p. So it suffices to

show that the right-hand side of (??) satisfies the defining
equation.

Z :U’P(av C):U’Q(X’Z) = Z HP(av C) Z MQ(XvZ)

(c.z)€l(ax),(b.y)] cela,b] ze[x,y]
= 5P(a7 b)(SO(XaY)
= 6P><O((avx)7(b7.y))' [



Theorem
1. IfS € B, then u(S) = (—1)I°!
2. Ifd =p™ - p € D, then

. (—1)k ifm1:...:mk:1,
p(d) _{ 0 if m; > 2 for some i.

Proof for B,. We have an isomorphism f : B, — (Cy)". Also

pe,(0)=1 and pc (1) =—1.
Now if f(S) = (by, ..., bp) then by the previous theorem

18,(S) = wcyn(bi,- -, bn)
= HMG (by)
(11)(# of b,' = 1)

= (-1 O



Theorem (Mobius Inversion Thm - MIT, Weisner (1935))

Consider a finite poset P and two functions f : P — R and
g : P — R. Then the following are equivalent statements.

= g(x) forally € P.

x<y
= u(x,y)f(x) forally € P.
x<y
Proof. Let L : x4, ..., xn be the linear extension used for /(P).

Consider vectors v = [f(x1) ... f(xn)], v9 = [9(x1), ..., 9(Xn)].
=Y g(X) Vy e P < f(y)=> g(x)¢(x,y) Vy € P

X<y xXeP
— Vi=vIMS =  vI=vI(M)T = vIMH
— = f(X)u(x,y) Vy € P
xeP
= gly)=>_f(X)u(x,y) Vy € P. O

X<y



Theorem (MIT)

f(y) =) _9(x)vy e P <= g(y) = > _u(x,y)f(x)¥y € P. O

X<y X<y

Ex. Theory of Finite Differences.
Forg:N—R: Ag(n) =g(n)—g(n—1), Sg(n)=>_g(i).

Theorem (FTDC)

Ifg:N—Rthen:  ASg(n)= g(n).

Proof. Consider the chain C, and the restriction g : C, — R.
For each k € C,, define

f(k) = g(i) = Sg(k).
i<k
Then by the MIT applied to C,
a(n) = X i< uli, ME(i) = p(n, Mf(n) + p(n—1,nf(n—1)
= f(n) — f(n—1) = Af(n) = ASg(n). O



Theorem (Dual MIT)

=> gy)Vxe P = g(x)=>_ ux, Nf(y)vxeP. O

y=>x y>x

Ex. Principle of Inclusion-Exclusion.
Theorem (PIE)
Let U be a finite setand Uy, ..., U, C U.

‘uuu,- = U= 3D U+ (1)
i=1

1<i<n
Proof. For the Boolean algebra B, define f,g : B, — R by

f(S) = #ofelementsinall U;, i € S, and possibly other U;,
g9(S) = #ofelementsinall U;, i € S, and no other U,.

Now £(S) = | Nics Ui and £(S) = Y755 9(T)- Thus

|U— U U,-| =g(0) = u@®. DT =Y (-1

i=1 T20 TeBn

) Uil-

ieT

O



Theorem (MIT)
=) gX)Vy €P = g(y)=>_ ux,y)f(x)vyeP. O
x<y x<y

Ex. Number Theory
Theorem (Number Theory MIT)
Letf,g:P — R satisfy f(n) = >_4,,9(d) foralln € P. Then

=3 uln/d)f(d)

dn

Proof. The restrictions f, g : D, — R satisfy, for all m € D:
=> gld)= > g(d)
dlm d<p,m
Apply the poset MIT to D, and use [d, n] = [1, n/d]:

am = 3= u(d,ni(d) =5 u(d. mf(d) = 3 u(n/a)f(a). O

d<p,n dln dln



