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Suppose S is a set and let C be a finite cyclic group acting on
S. If g ∈ C, we let

Sg = {t ∈ S : gt = t} and o(g) = order of g in C.

We also let
ωd = primitive d th root of unity.

Finally, suppose we are given f (q) ∈ R[q], a polynomial in q.

Definition (Reiner-Stanton-White, 2004)
The triple (S,C, f (q)) exhibits the cyclic sieving phenomenon
(c.s.p.) if, for all g ∈ C, we have

#Sg = f (ωo(g)).

Notes. 1. The case #C = 2 was first studied by Stembridge
[1994] and called “the q = −1 phenomenon.”
2. Recent work by: Bessis, Eu, Fu, Petersen, Pylyavskyy,
Rhoades, Serrano, Shareshian, Wachs.



Let [n] = {1,2, . . . ,n} and

S =

(
[n]
k

)
= {T ⊆ [n] : #T = k}.

Let Cn = 〈(1,2, . . . ,n)〉. Now g ∈ Cn acts on T = {t1, . . . , tk}
by

gT = {g(t1), . . . ,g(tk )}.

Ex. Suppose n = 4 and k = 2. We have

S = {12, 13, 14, 23, 24, 34}.

Also

C4 = 〈(1,2,3,4)〉 = {e, (1,2,3,4), (1,3)(2,4), (1,4,3,2)}.

For g = (1,3)(2,4) we have

(1,3)(2,4)12 = 34, (1,3)(2,4)13 = 13, (1,3)(2,4)14 = 23,
(1,3)(2,4)23 = 14, (1,3)(2,4)24 = 24, (1,3)(2,4)34 = 12.

return 1 return 2



Let [n]q = 1 + q + q2 + · · ·+ qn−1 and [n]q! = [1]q[2]q · · · [n]q.
Define the Gaussian polynomials or q-binomial coeffiecients by[

n
k

]
q
=

[n]q!
[k ]q![n − k ]q!

.

Theorem (Reiner-Stanton-White)
The c.s.p. is exhibited by( (

[n]
k

)
, Cn,

[
n
k

]
q

)
.

Ex. Consider n = 4, k = 2. So[
4
2

]
q
=

[4]q!
[2]q![2]q!

= 1 + q + 2q2 + q3 + q4.

For g = (1,3)(2,4) we have o(g) = 2 and ω = −1 so[
4
2

]
−1

= 1− 1 + 2− 1 + 1 = 2 = #S(1,3)(2,4).



Most proofs of the c.s.p. involve either explicitly evaluating
polynomials at roots of unity or representation theory. We have
given the first purely combinatorial proof. To combinatorially
prove (S,C, f (q)) exhibits the c.s.p., first find a weight function
wt : S → R[q] such that

f (q) =
∑
T∈S

wt T . (1)

If B ⊆ S we let wt B =
∑

T∈B wt T . For each g ∈ C we then find
a partition of S

π = πg = {B1,B2, . . .}
satisfying, the following two criteria where ω = ωo(g):

(I) For 1 ≤ i ≤ #Sg we have #Bi = 1 and wt Bi |ω = 1.

(II) For i > #Sg we have #Bi > 1 and wt Bi |ω = 0.
We then have the c.s.p. since for each g ∈ C

f (ω) =
∑
T∈S

wt T |ω =
∑

i

wt Bi |ω =

#Sg︷ ︸︸ ︷
1 + · · ·+ 1+0+0+· · · = #Sg .



Theorem (Reiner, Stanton, White)

The c.s.p. is exhibited by the triple

( (
[n]
k

)
, Cn,

[
n
k

]
q

)
.

Combinatorial Proof. For T ∈
([n]

k

)
let wt T = q

∑
t∈T t−(k+1

2 ).

∴
∑

T∈([n]k )

wt T =

[
n
k

]
q
.

Suppose g ∈ Cn with o(g) = d , say g = (1, . . . ,n)n/d so

g = (1,1 + n/d ,1 + 2n/d , . . .)(2,2 + n/d ,2 + 2n/d , . . .) · · ·

Let gi = (i , i + n/d , i + 2n/d , . . .) for 1 ≤ i ≤ n/d . So T ∈ Sg

iff T can be written as T = gi1 ] gi2 ] · · ·
Ex. If n = 4 and k = 2 then wt{t1, t2} = qt1+t2−3. So

T : 12 13 14 23 24 34,∑
T wt T = q0 + q1 + q2 + q2 + q3 + q4 =

[
4
2

]
q
.

If g = (1,3)(2,4) then Sg = {13,24}.



Let h = (1,2, . . . ,d)(d + 1,d + 2, . . . ,2d) · · · and
hi = (id + 1, id + 2, . . . , (i + 1)d) for 0 ≤ i < n/d . Since g and

h have the same cycle type, #
([n]

k

)g
= #

([n]
k

)h
. For any

T ∈
([n]

k

)
define the block B of π containing T by as follows. If

hT = T then B = {T}. If hT 6= T , then find the smallest index
i such that 0 < #(T ∩ hi) < d and let

B = {T ,hiT ,h2
i T , . . . ,hd−1

i T}.
Proof of (II): If ω = ωd , wt T = qj , ` = |T ∩ hi | then 0 < ` < d .

∴ wt B = wt T + wt hiT + · · ·+ wt hd−1
i T

∴ wt B|ω = ωj + ωj+` + · · ·+ ωj+(d−1)` = ωj 1− ωd`

1− ω`
= 0

since ωd = 1 and ω` 6= 1.

Ex: n = 4, k = 2, g = (1,3)(2,4). So h = (1,2)(3,4), and π:

{12}, {34}, {13, (1,2)13} = {13,23}, {14, (1,2)14} = {14,24}.

wt{12}|−1 = (−1)0 = 1, wt{13,23}|−1 = (−1)1 + (−1)2 = 0,
wt{34}|−1 = (−1)4 = 1, wt{14,24}|−1 = (−1)2 + (−1)3 = 0.
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Figure: Two triangulations: proper (left) and improper (right)

A triangulation, T , is a subdivision of a regular polygon P into
triangles using noncrossing diagonals. Let Tn be the set of all
triangulations of an n-gon. Then

#Tn+2 =
1

n + 1

(
2n
n

)
.

Let Cn be the group of rotations of a regular n-gon.

Theorem (Reiner-Stanton-White)
The c.s.p. is exhibited by the triple(

Tn+2, Cn+2,
1

[n + 1]q

[
2n
n

]
q

)
.



Label (color) the vertices of P cyclically 1,2,1,2, . . . Call a
triangulation proper if it contains no monochromatic triangle.

Let Pn be the set of proper triangulations of a regular n-gon.

Theorem (S)
We have

#Pn+2 =


2m

2m + 1

(
3m
m

)
if n = 2m,

2m+1

2m + 2

(
3m + 1

m

)
if n = 2m + 1.

Note that for n odd, rotation does not preserve properness. If
n = 2m then let

pn(q) =
(1 + q2)

(
[2]m−1

q − [2]dm/2e−1
q + 2dm/2e−1

)
[2m + 1]q

[
3m
m

]
q
.

Theorem (Roichman-S)
If n = 2m then (Pn+2,Cn+2,pn(q)) exhibits the c.s.p.



I. Is there a combinatorial proof of the Reiner-Stanton-White
theorem about (uncolored) triangulations? The first difficulty is
to find a weight function wt : Tn → R[q] such that

(a) we have ∑
T∈Tn+2

wt T =
1

[n + 1]q

[
2n
n

]
q
,

(b) and wt T is well behaved with respect to rotation.

Note that there are various other families of combinatorial
objects (Dyck paths, 2-rowed standard Young tableaux) with a
weighting giving the q-Catalan numbers. The hope is that one
of these can be reformulated in terms of triangulations in a way
that (b) above will be satisfied.



II. Let Dn,k be the set of all dissections of a regular n-gon using
k noncrossing diagonals. So if k = n − 3 then we have a
triangulation. We have

#Dn,k =
1

n + k

(
n + k
k + 1

)(
n − 3

k

)
.

There is an action of Cn on dissections just as on triangulations.

Theorem (Reiner-Stanton-White)
The c.s.p. is exhibited by the triple(

Dn,k ,Cn,
1

[n + k ]q

[
n + k
k + 1

]
q

[
n − 3

k

]
q

)
.

Burstein-Roichman-S are investigating proper dissections (no
monochromatic sub-polygon) even for q = 1. So far we have
proved a formula for triangulations with a different coloring
scheme which involves a new basis for the algebra of
symmetric functions.
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