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Suppose S is a set and let C be a finite cyclic group acting on
S. Ifge C,welet

S9={te S : gt=t}and o(g) =order of gin C.

We also let
wq = primitive dth root of unity.

Finally, suppose we are given f(q) € R[q], a polynomial in g.

Definition (Reiner-Stanton-White, 2004)

The triple (S, C, f(q)) exhibits the cyclic sieving phenomenon
(c.s.p.) if, for all g € C, we have

#8589 = f(wo(g))-

Notes. 1. The case #C = 2 was first studied by Stembridge
[1994] and called “the g = —1 phenomenon.”

2. Recent work by: Bessis, Eu, Fu, Petersen, Pylyavskyy,
Rhoades, Serrano, Shareshian, Wachs.



Let [n] ={1,2,...,n} and
S=(T)={Tgm]:#r=k}

Let Ch = ((1,2,...,n)). Nowge Cpactson T ={t,...,k}
by
aT ={g(tr),- .., 9(t)}-
Ex. Suppose n=4 and k = 2. We have
S={12, 13, 14, 23, 24, 34}

Also

Cs=1((1,2,3,4)) ={e, (1,2,3,4), (1,3)(2,4), (1,4,3,2)}.

For g = (1,3)(2,4) we have

(1,3)(2,4)12=34, (1,3)(2,4)13=13, (1,3)(2,4)14 =28,
(1,3)(2,4)23 =14, (1,3)(2,4)24 =24, (1,3)(2,4)34 =12.
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Let[ng=1+qg+q*>+---+q" " and [n]g! = [1]g[2]g- - [Nlg-
Define the Gaussian polynomials or q-binomial coeffiecients by

[n} Iyl
k|, [Klglln—Klg!

Theorem (Reiner-Stanton-White)
The c.s.p. is exhibited by

((@)e[2],)

Ex. Considern=4, k =2. So
4 [4]4! >, 3, 4
= e = 1 +9+2°+q°+q". €@
{ 2 L [2]q![2]4!
Forg=(1,3)(2,4) we have o(g) =2andw = —1 so

B] =1-1+2-14+1=2=#5194 o
—1



Most proofs of the c.s.p. involve either explicitly evaluating
polynomials at roots of unity or representation theory. We have
given the first purely combinatorial proof. To combinatorially
prove (S, C, f(q)) exhibits the c.s.p., first find a weight function
wt : S — R[q] such that

flg)=> wtT. (1)
TeS
If BC SweletwtB=7) ;_gwtT. Foreach g € C we then find
a partition of S
m=mg={B1,Bs,...}
satisfying, the following two criteria where w = wq(g):
() For1 < i< #89wehave #B;=1andwtB;j|, = 1.
() Fori> #89 we have #B; > 1 and wt B|,, = 0.
We then have the c.s.p. since foreach g € C
SQ
=) wtT|, = Zth\w T F 740404 — #5Y,
TeS



Theorem (Reiner, Stanton, White)

The c.s.p. is exhibited by the triple ( <[Z]>, Cn, [ n

k

)

Combinatorial Proof. For T e () letwt T = qeert=(21).

n
3 Z wtT = [ k] .
Te(7) 7
Suppose g € C, with o(g) = d,say g = (1,...,n)"? so
g=1,1+n/d,1+2n/d,...)(2,2+ n/d,2+2n/d,...)---

Letgi=(i,i+n/d,i+2n/d,...)for1 <i<n/d. SoTeS9
iff T can be writtenas T =g;, W g, W---

Ex. If n=4 and k = 2 then wt{t;, i} = g"*%2=3. So
T 212 13 14 23 24 34,

SwtT =q¢° +q' + ¢ + 2 + ¢ + ¢* = {
If g =(1,3)(2,4) then S9 = {13,24}. @



Let h=(1,2,....,d)(d+1,d+2,...,2d)--- and
hi=(id+1,id+2,...,(i+1)d)for0 <i< n/d. Since gand
h have the same cycle type, #(17)7 = #([Z])h. For any

T e (I define the block B of « containing T by as follows.  If
hT = T then B={T}. If hT # T, then find the smallest index
i suchthat 0 < #(T N h;) < d and let

B={T,hT,WT,....h?"T}.
Proof of (I): fw =wg, Wt T =¢,¢=|Tnhjthen0 < ¢ < d.
cWEB=wtT +wth T+ +wth?'T

,-,th|w:w/+wa+ ‘_'+wj+(df1)£:wj1__7":)€:0
sincewd=1andw’#1. =m
Ex:n=4,k=2,9g=(1,3)(2,4). So h=(1,2)(3,4), andr:
{12}, {34}, {13,(1,2)13} = {13,23}, {14,(1,2)14} = {14,24}
wt{12}|_1 = (=1)° =1, wt{13,23}|_1 = (1) +(-1)? =
wt{34}|_1 = (—1)* =1, wt{14,24}|_y = (-1)>+(-1)% =
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Figure: Two triangulations: proper (left) and improper (right)
A triangulation, T, is a subdivision of a regular polygon P into

triangles using noncrossing diagonals. Let 7, be the set of all
triangulations of an n-gon. Then

1 2
#Tnie = < nn) :

n+1
Let C, be the group of rotations of a regular n-gon.

Theorem (Reiner-Stanton-White)
The c.s.p. is exhibited by the triple

1 2n
< 7-[7+27 Cn+27 m |: n :| ) ||
q



Label (color) the vertices of P cyclically 1,2,1,2,... Call a
triangulation proper if it contains no monochromatic triangle.
Let P, be the set of proper triangulations of a regular n-gon.

Theorem (S)

We have om 3m
ifn=2m,
2m+1 <m>
#Pn+2: "
m
2 SMEN p_omit. m
2m+2 m

Note that for n odd, rotation does not preserve properness. If
n=2mthen let

(1+¢?) ([21§ " - [2lg™2 7 +2Im/21-
o M
[2m+ 1], m |,

pn(q) =

Theorem (Roichman-S)
If n=2m then (Pni2, Cni2, Pn(q)) exhibits the c.s.p. ]



l. Is there a combinatorial proof of the Reiner-Stanton-White
theorem about (uncolored) triangulations? The first difficulty is
to find a weight function wt : 7, — R[q] such that

(a) we have

Z th:711 {Znn] ,
T€Tni2 [n+1q q

(b) and wt T is well behaved with respect to rotation.

Note that there are various other families of combinatorial
objects (Dyck paths, 2-rowed standard Young tableaux) with a
weighting giving the g-Catalan numbers. The hope is that one
of these can be reformulated in terms of triangulations in a way
that (b) above will be satisfied.



Il. Let D, « be the set of all dissections of a regular n-gon using
k noncrossing diagonals. So if Kk = n — 3 then we have a
triangulation. We have

1 n+k\/n-3
#D”’k_n+k<k+1>< k )

There is an action of C, on dissections just as on triangulations.

Theorem (Reiner-Stanton-White)
The c.s.p. is exhibited by the triple

(ruogtag 4], 17,).

Burstein-Roichman-S are investigating proper dissections (no
monochromatic sub-polygon) even for g = 1. So far we have
proved a formula for triangulations with a different coloring
scheme which involves a new basis for the algebra of
symmetric functions.
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